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Abstract—In this paper, we present a multi-microphone speech
separation algorithm based on masking inferred from the speak-
ers direction of arrival (DOA). According to the W-disjoint
orthogonality property of speech signals, each time-frequency
(TF) bin is dominated by a single speaker. This TF bin can
therefore be associated with a single DOA. In our procedure, we
apply a deep neural network (DNN) with a U-net architecture
to infer the DOA of each TF bin from a concatenated set of
the spectra of the microphone signals. Separation is obtained by
multiplying the reference microphone by the masks associated
with the different DOAs. Our proposed deep direction estimation
for speech separation (DDESS) method is inspired by the recent
advances in deep clustering methods. Unlike already established
methods that apply the clustering in a latent embedded space, in
our approach the embedding is closely associated with the spatial
information, as manifested by the different speakers’ directions
of arrival.

I. INTRODUCTION

Audio and speech source separation is an active research
field for the past two decades. A comprehensive survey of
single- and multi-microphone approaches can be found in [1]–
[3] and will hence not be explored here. We rather focus on
learning-based approaches, most notably those using DNN.

Most single microphone approaches are utilizing masking
operation. In a nutshell, masking involves clustering of TF bins
to the various speakers in the scene, and a multiplication of the
noisy spectrogram by ‘1’ in TF bins clustered to the desired
speaker, and ‘0’ otherwise. The underline assumption of these
masking algorithm is the W-disjoint orthogonality principle
introduced in [4], [5], stating that each TF bin is dominated
by a single speaker, at least if the number of speakers is small
enough.

Recently, deep clustering approach was introduced for
single-microphone speaker separation [6], [7]. In this ap-
proach, an embedding from the high-dimensional short-time
Fourier transform (STFT) representation of the speech to a
low-dimensional latent space was first inferred, followed by
a clustering operation in the latent space. Another approach,
which uses permutation invariant training (PIT) was presented
in [8]. Both these approaches had a dramatic impact on the
single-microphone speech separation field. Yet, as they only
exploit spectral information, their performance deteriorates in
the presence of high reverberation, or when the speakers are
characterized by similar spectral patterns. In many cases the
outcome of these algorithms is characterized by musical-noise
artifacts.

Spatial information, namely the attenuation and the time-
delay between each of the sources’ positions and a microphone
pair, were utilized to estimate the separation mask in the
degenerate unmixing estimation technique (DUET) approach
[9]. Other multichannel separation algorithms are utilizing the
single-channel deep clustering approach for estimating the
building-blocks of the beamformer, specifically its steering
vector [10], [11]. These approaches combine the advantages of
the TF clustering operation, with the low distortion characteris-
tics of the linear spatial processing that substitutes the masking
operation. Other works train DNNs in order to estimate
spectral masks. In [12] a DNN is applied to spatial features
to infer a DOA-based mask, which is then used as a post-
filtering stage at the output of a delay-and-sum beamformer.
In [13] a group of DNNs, each applied in a different frequency
band, is trained to predict a mask from spatial features. This
information is then aggregated to generate a soft mask which
is used for the final speech separation. In [14] an unsupervised
deep clustering approach was applied to multiple mixtures
of sources in a training stage. The trained DNN was then
applied to the test mixture to predict the separating masks. In
[15], a single-channel deep clustering network was trained in
a supervised manner, where the supervision was obtained by
a multichannel segmentation network.

Other approaches combining DNNs and beamforming are
presented in [16], [17]. In these methods, a concurrent speakers
detector (CSD) is implemented to distinguish between noise-
only frames, single-speaker frames and concurrently active
speakers frames. In the first two classes the noise spatial
correlation matrix and the steering vectors are estimated,
respectively. In the third class, the beamformer weights are
not updated.

The deep clustering framework was extended to the mul-
tichannel setting in [18]. Spatial information was augmented
with the spectral cues to form an input feature to the bidi-
rectional long short-term memory (BLSTM) deep clustering
network. The separation in this approach is still applied by
single-channel masking using the clustering in the embedded
latent domain.

In the current contribution, we are presenting a U-net archi-
tecture to address the speech separation task. It is assumed that
the speakers are in different DOAs in the room. Consequently,
rather than inferring a latent embedded domain, we utilize the
DOA as the supervision of our network. Motivated by the
great success of the U-net architecture in the computer vision
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field [19], and the high performance of the convolutional
neural networks (CNNs) in estimation the DOA of multi
speakers in noisy and reverberant environments [20], we train
a U-net to classify each TF bin of the multichannel STFT
image to one of the DOA candidates. The performance of
the proposed schemes is demonstrated using recorded acoustic
channels, while training is carried out using simulated data.

II. DEEP SPEECH SEPARATION

A. The separation algorithm

Consider an array of M microphones capturing a mixture of
N speech sources in a reverberant enclosure. The i-th speech
signal si(t) propagates through the acoustic channel before
being captured by the mth microphone:

zm(t) =
N∑
i=1

si(t) ∗ him(t), m ∈ {1, . . . ,M} (1)

where, him is the room impulse response (RIR) relating the
ith speaker and the mth microphone. In the STFT domain,
(1) can be rewritten as:

zm(l, k) =
N∑
i=1

si(l, k)him(l, k), (2)

where l and k, are the time-frame and the frequency-bin (TF)
indexes, respectively.

Following the W-disjoint orthogonality assumption [4], each
TF bin is dominated by a single speaker. We assume that each
speaker is located at a different DOA and therefore each bin is
dominated by a single DOA. The crux of our speech separation
method is to estimate the DOA for each TF bin by a neural
network and then separate the speakers by grouping these bins
according to their estimated DOA.

The main building block of the algorithm is a neural
network that uses the microphone signals to infer the DOA at
each TF bin of a given time-frequency image. The network
input is a L × K time-frequency “image” where L is the
number of time frames and K is the number of frequency bins.
We have chosen to substitute the raw microphone signals with
the phase of the instantaneous relative transfer function (RTF)
estimate, calculated as the phase of the bin-wise ratio between
the mth microphone signal and the reference microphone
signal. The phase angle is encoded as a point in the unit circle.
The input features to the network, therefore, is an L×K matrix
R where each (l, k) entry has M channels each correspond
to a microphone:

r(l, k,m) = (cos(∠
zm(l, k)

zref(l, k)
), sin(∠

zm(l, k)

zref(l, k)
)). (3)

Due to the W-disjoint assumption, the normalized features
r(l, k,m) are dominated by a single speaker and hence cor-
respond to a specific DOA. Ideally, the speech contribution
to r(l, k,m) is negligible. Hence, it is expected that these are
better features than the raw data for DOA estimation.

We form the DOA estimation as a classification task
by discretizing the possible angles to be in the set Θ =

{0◦, 15◦, 30◦ . . . , 180◦}. Let yl,k be a random variable indicat-
ing the active direction at bin (l, k). The target of the network
is to infer the conditional distribution of the discrete set of
candidate DOAs in Θ for each TF bin, given the recorded
signal:

pl,k(θ) = p(yl,k = θ|R), θ ∈ Θ. (4)

where R is an L×K matrix of all the TF bins. The image-to-
image DOA prediction task in (4) is implemented by a U-net,
which details are given in the next section.

Next, the direction-dependent power is calculated by the
instantaneous power of the reference microphone, weighted
by the U-net output:

E(θ) =
∑
l,k

pl,k(θ) · |zref(l, k)|2, θ ∈ Θ. (5)

Note that the total power is satisfying the following equation:

E =
∑
θ∈Θ

E(θ) =
∑
l,k

|zref(l, k)|2. (6)

High power from a specific direction is an indication for an
active speaker at this direction. To find all directions of the
active speakers in the scene, we sort the powers according to
their power level:

E(θ1) ≥ E(θ2) ≥ E(θ3) ...

where θ1 corresponds to the direction with the highest power,
θ2 the second highest, etc. The speakers’ directions are then
determined by the N DOAs with the highest power level. If
the number of speakers N is not known in advance, we can
set N as the minimal value such that

∑N
i=1E(θi) > αE, with

α is a predefined threshold.
The next step is to use the estimated DOA to form a mask

for each detected speaker in the scene. The estimated mask of
the ith speaker is the U-net output:

M̂i(l, k) = pl,k(θi) (7)

and the absolute value of the ith speaker signal is reconstructed
as follows:

|ŝi(l, k)| = |zref(l, k)| · M̂i(l, k). (8)

The noisy phase is then used to reconstruct the separated
signals in the time-domain, by the application of the inverse
STFT. We dub the proposed algorithm deep direction estima-
tion for speech separation (DDESS).

Note, that if a static acoustic scene can be assumed, namely
that the sources do not significantly change their DOA during
the entire utterance, permutation problems, which are typical
to clustering-based approaches [7], are circumvented.

Note that estimating the DOA is modeled here as a clas-
sification problem and not as a regression task. We are not
interested in finding the exact DOAs of the speakers in the
scenario but rather, grouping them into distinct directions. That
is, even with inaccurate DOA estimate, the speech separation
can still work, provided that most TF bins are clustered to a
mutually exclusive classes.
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Fig. 1: U-net architecture for DOA-mask speech separation. The blue blocks depict the encoder and the green blocks depict
the decoder.

B. The U-net for DOA estimation

The input to the network is the feature matrix R. The
overlap between successive STFT frames is set to 75 %.
Hence, to improve the estimation accuracy of the RTFs, we
have used an average of three consecutive frames both in the
numerator and denominator of (3).

In our U-net architecture, the input shape is (L,K, 2(M −
1)) where, K = 256 is the number of frequency bins, L = 96
is the number of frames, and M is the number of microphones.
The output shape is (L,K, |Θ|) where |Θ| is the cardinality
of the set Θ.

The U-net architecture is presented in Fig. 1. The blue
boxes depict the encoder and the green boxes the decoder.
In this architecture, in the encoder part, the input image is
squeezed into a bottleneck using 2×2 max pooling operations
(downsample), and then in the encoder part it is upsampled
back to the original image shape. The main problem with
this architecture is that during the pooling operation important
local information is lost. To tackle this problem, a U-shape
architecture was developed in [19]. The U-net connects be-
tween mirrored layers in the encoder and decoder by passing
the information without going through the bottleneck and thus,
alleviating the information loss problem.

Let CEl,s denote a 2D convolution layer with ‘elu’ as the
activation function, where l is the number of filters and s×s is
the filter size. Similarly, let DEl,s is the de-convolution ‘elu’
layer. Finally, let Ps denote the max-pooling operation with
filter size s× s.

The encoder down-sampling path is given by:
CE16,3 → CE16,3 → P2 → CE32,3 → CE32,3 → P2 →
CE64,3 → CE64,3 → P2 → CE128,3 → CE128,3 → P2 →
CE256,3 → CE256,3.

The decoder up-sampling path is given by:
DE128,3 → CE128,3 → CE128,3 → DE64,3 → CE64,3 →
CE32,3 → DE32,3 → CE32,3 → CE32,3 → DE16,3 →
CE16,3 → CE16,3 → CE13,1.

The output DOA distribution is finally obtained by a soft-
max layer. To overcome the problem of overfitting, we add
dropout layers [21] after every CEl,s layer. Additionally, the
raw data input is normalized to zero mean and unit variance.

To train the network we use a simulated data where both
the location and a clean recording of each speaker are given.
We can thus easily find for each TF bin (l, k) the dominant
speaker and the corresponding DOA yk,l ∈ Θ. The network
is trained to minimize the cross entropy between the correct
and the estimated DOA. The cross entropy cost function is
summed over all the images in the training set. The network
was implemented with Tensor-Flow and training was done
using the ADAM optimizer [22]. The number of epochs was
set to be 100, and the training stopped after validation loss was
going up for 3 successive epochs. The minibatch size was 64
images.

III. EXPERIMENTAL STUDY

In this section we evaluate the proposed DDESS algorithm
and compare its performance to the DUET algorithm [9].

A. Training database

To generate the training data we used the RIR generator1

efficiently implementing the image method [23]. We simulated
an eight microphone array with (3, 3, 3, 8, 3, 3, 3) cm between
microphones. Similar microphone inter-distance was used in
the test phase. The dimensions of the room are 6 × 6 × 2.4
(width, length and height), similar to the acoustic lab used
in the test phase. The microphone array was positioned at
(3, 1, 1.5) m.

For each scenario two clean signals from the wall street
journal (WSJ) database [24] were randomly selected and two
different DOAs were also randomly selected from the possible
values in the range Θ = {0, 15, . . . , 180}. The speakers were
located in a radius of r = 1.5m from the center of the micro-
phone array. To increase the training diversity, the radius of
the speakers was perturbed by a Gaussian noise with variance
0.3 m. The DOA of each speaker was computed with respect
to the center of the array. We used T60 ∈ {0.2, 0.3, 0.4}sec.
Once the scenario is set, the RIRs were generated, and the
clean signals were separately convolved with them. Finally,
we added the signals with signal to interference ratio (SIR)
randomly chosen in the range SIR ∈ [−2, 2]. Sampling rate

1Available online at github.com/ehabets/RIR-Generator
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TABLE I: SDR and SIR results with two T60 and distance 1m.

T60 = 160 T60 = 360
SDR SIR SDR SIR

Speaker 1 2 1 2 1 2 1 2
Noisy -1.05 -1.41 0.23 -0.11 -0.91 -1.75 0.5 -0.41
DUET 1.3 0.7 4.24 3.38 0.87 -0.33 3.59 2.24
DDESS 2.26 1.95 12.6 12.43 1.68 1.69 13.06 12.76

TABLE II: SDR and SIR results with two T60 and distance 2m.

T60 = 160 T60 = 360
SDR SIR SDR SIR

Speaker 1 2 1 2 1 2 1 2
Noisy -1.22 -1.49 0.19 -0.07 -2.07 -1.07 -0.5 0.68
DUET -0.31 -0.26 2.24 2.41 -1.79 -0.1 1.04 2.44
DDESS 1.38 1.31 11.46 11.44 0.08 1.02 11.1 11.68

(a) Mixture signal. (b) The power of each DOA candidate.

(c) Original speaker 1. (d) Original speaker 2.

(e) Estimated speaker 1. (f) Estimated speaker 2.

Fig. 2: An example of the separation results of the DDESS algorithm.

was set to 16KHz and the frame length of the STFT was set
to K = 512, with overlap of 75% between two successive
frames. The training set comprises two hours of recordings

with 6000 different scenarios of mixtures of two speakers.
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B. Separation Results

For each test scenario, we selected two speakers (male or
female) from the test set of the TIMIT database, placed them
in two different angles between 0◦ to 180◦ relative to the
microphone array, at the distance of either 1 m or 2 m.

Each clean speech signal was convolved with a real
RIR, drawn from the multichannel impulse response database
recorded in our acoustic lab [25] (similar room dimensions and
microphone inter-distances to the simulated scenarios), and
then mixed the with SIR=0 dB. We used T60 = 160/360 ms
for the room reverberation. Overall, in the test dataset we had
30 different scenarios for each T60, and the results are the
averaged over all scenarios.

We used a standard blind source separation (BSS) evaluation
toolbox [26] to test the separation capabilities of the DDESS
algorithm and the DUET algorithm [9]. Tables I and II present
the SIR and signal to distortion ratio (SDR) results for the two
source distances, 1m and 2m, respectively. It is evident that the
DDESS algorithm outperforms the DUET in all experiments.

Fig. 2 depicts the spectrogram of the noisy input, the clean
signals and the estimates obtained by the proposed algorithm
for two equi-power speakers positioned at 90◦ and 180◦ and
r = 2 m and for T60 = 160 ms. It is evident that the DDESS
separates the signals. Fig. 2b depicts the power level for DOA
candidates. It is clear that the DOAs were accurately classified.
Sound samples can be found in the lab website.2

IV. CONCLUSIONS

In this study, we presented a speech separation algorithm,
based on DOA classification and masking. A DNN with a U-
net architecture is trained to classify TF bins to DOAs. The
association of each TF bin to specific DOA is used to construct
spectral masks, which when applied to the spectrogram of the
reference microphone obtain spectral source separation. The
U-net was trained in a simulated room and tested with real RIR
recordings, demonstrating the proposed algorithm capabilities
in the task of blindly separating the sources. In the future we
plan to increase the robustness of the proposed algorithm to
mismatch between train and test conditions. Another possible
extension is to address dynamic scenarios and to provide a
trajectory estimate for the speakers.
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