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Abstract—In mmWave communications, large-scale arrays can
be very advantageous. In such arrays, switch-based hybrid
precoding (beamforming) is very promising in terms of energy
efficiency and reduced complexity, as opposed to phase-shifter
structures for beamforming. However, switch-based structures
are binary, which means that the design of an optimum beam-
former, at large-scale in the analog domain, is a difficult task. We
address this problem and propose a new method for the design of
a switch-based hybrid precoder for massive MIMO communica-
tions in mmWave bands. We first cast the relevant maximization
of mutual information as a binary, rank-constrained quadratic
maximization, and solve it iteratively for each column of the
analog precoder. The solution is then effectively approximated via
a set of relaxations and sequential convex programming (SCP).
Finally, we show the feasibility, and effectiveness of our method
via numerical results.

Index Terms—Hybrid beamforming, Precoding, Millimeter
wave communications, Massive MIMO.

I. INTRODUCTION

The smaller wavelengths in mmWave communication sys-
tems allow the use of large-scale antenna arrays at the
transceivers. In this context, massive multiple-input multiple-
output (MIMO) systems are showing great promise for al-
leviating spectrum congestion in future generation wireless
cellular communication systems [1]. However, capitalizing
on their potential through fully-digital beamforming faces
many challenges as every antenna element must have its own
dedicated radio frequency (RF) and baseband chain [2], [3].
The cost and complexity of the hardware chains at mmWave
frequencies, along with the associated power consumption,
makes fully digital processing undesirable, or even impractical
[4]. Therefore, there is a need for efficient implementations of
beamforming for massive MIMO systems in mmWave bands
that mitigate these problems.

Hybrid beamforming is a well-established approach in
massive MIMO communication systems that has received
significant attention [5]. It employs a two-stage analog and
digital processing configuration where the analog precoding
stage, which is simpler and less power-hungry, presents a
reduced-dimensional signal to the RF and baseband stages [6].
Although the use of phase shifters in the analog beamforming
stage provides substantial simplification [7], their practical
realization for mmWave frequencies is not a simple task [8].
Digitally controlled phase shifters can suffer from precision

[8], latency [5] and power consumption problems [9]. Passive
phase shifters are known to incur higher losses thus necessitat-
ing additional amplification to maintain an acceptable output
signal-to-noise (SNR) [8].

Switch-based networks are a viable alternative to phase
shifters as they are simple, fast and enjoy low-power con-
sumption [5], [7]. They effectively combine subsets of the
available antennas such that they leverage the sparse nature of
mmWave massive MIMO channels to realize the performance
gains. Such a strategy has, in fact, been successfully applied
in various contexts to deliver a large aperture and satisfactory
performance at reduced hardware cost and complexity [10]–
[14].

The advantages of switch-based networks are realised at
the cost of increased difficulty at the design stage as the
optimization is over a set of binary variables. A dictionary-
based solution is presented in [15] but it is scenario-specific
and the size of the dictionary grows with the number of
antennas. In [6], on the other hand, a unified greedy algorithm
is developed, but this solution is limited to the case where the
digital beamforming matrix is square with dimension equal to
the number of data streams to be transmitted.

In this work, we propose a comprehensive approach for
the design of the optimum switch-based hybrid beamformer
in massive MIMO communications in mmWave bands. The
proposed method is not restricted to any special case and
the introduced convex optimization-based technique enables
imposing partially connected structures, which is highly de-
sirable in massive MIMO systems. We first decouple the
joint optimization of analog and digital precoding matrices
by utilizing a rank constrained subspace. Then by taking
advantage of a lower bound given by QR factorization, we
iteratively optimize the columns of the analog precoder such
that in each iteration we maximize a quadratic form via a
sequential convex programming (SCP) procedure. Finally, as
well as the proposed digital precoder update method, we study
the effect of using a least squares method.

II. PROBLEM FORMULATION

A hybrid structure for a single-user mmWave MIMO system
is depicted in Fig. 1, as proposed in [2], [7]. In this setup, the
transmitter comprises Nt antennas and Lt RF transmit chains,
and is required to send Ns data streams to the receiver. We
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Fig. 1. Block diagram of hybrid MIMO architecture for mmWave communication with baseband and analog precoder/combiner with a clustered channel
model.

assume that Ns ≤ Lt ≤ Nt. Let the transmit digital beamform-
ing matrix be FBB of size Lt×Ns, and RF precoder matrix be
FRF of size Nt×Lt. FRF is implemented using analog phase-
shifters or RF switches. The discrete-time transmit signal is
then x = Fs, where F = FRFFBB, and s is the Ns× 1 symbol
vector such that E[ss∗] = 1

Ns
INs

with E denoting the expected
value. At the receiver, Nr antennas are connected to Lr RF
receive chains to recover the transmitted symbol s. Similarly
to the transmitter, the receive beamformer W = WRFWBB

is composed of the Nr × Lr RF combining matrix WRF and
Lr ×Ns baseband beamforming matrix WBB.

Given a narrowband frequency-flat channel model repre-
sented by the Nr × Nt channel matrix H, with E

[
‖H‖2F

]
=

Nt ×Nr, we can write the received signal as

y =
√
ρW∗

BBW∗
RFHFRFFBBs + W∗

BBW∗
RFn.

Here ρ is the average received power, and n the additive zero-
mean i.i.d noise with variance σ2

n. Also, W∗
BB denotes the

conjugate transpose of WBB. For a clustered channel model
consisting of the sum of the contributions of Ncl scattering
clusters, with each cluster comprising Nray propagation paths,
the channel matrix is

H = γ
∑
i,`

αi`Λr(φ
r
i`, θ

r
i`)Λt(φ

t
i`, θ

t
i`)ar(φ

r
i`, θ

r
i`)at(φ

t
i`, θ

t
i`)

∗,

where γ =
√

NrtNr

NclNray
is a normalization factor and αi`

is the complex amplitude associated with the `-th ray in
the i-th cluster. The antenna gain at direction of departure
(DoD) azimuth and elevation angles (φt

i`, θ
t
i`), and direction

of arrival (DoA)(φr
i`, θ

r
i`), are denoted theby Λr(φ

r
i`, θ

r
i`), and

Λt(φ
r
i`, θ

r
i`) respectively. The DoDs and DoAs of the scatterers

are assumed randomly distributed with a Laplacian distribution
[2]. The vectors, ar(φ

r
i`, θ

r
i`) and at(φ

r
i`, θ

r
i`) are respectively

the receive and transmit array steering vector associated with
the `-th ray in the i-th cluster. For an uniform planar array
(UPA) located in the yz-plane, the array response is

a(φ, θ) =
1√
N

[
ejkd(m sin(φ) sin(θ)+n cos(θ))

]
0 ≥ m ≥ Ny, 0 ≥ n ≥ Nz (1)

where N is the total number of elements, while Ny and Nz are
the number of grid points in the y, and z planes respectively
such that N = NyNz .

Let the transmit power be divided equally among all the
data streams. Then, the mutual information is expressed as

I = log2

(∣∣∣INs
+

ρ

Ns
R−1
n W∗

BBW∗
RFHFRFFBB

× F∗
BBF∗

RFH∗WRFWBB

∣∣∣). (2)

Here, Rn is the noise covariance matrix at the receiver
given by Rn = σ2W∗

BBW∗
RFWRFWBB. The optimum beam-

former is composed of the precoding and combining matrices
(FBB,FRF,WBB,WRF) that maximise the mutual informa-
tion. However, this design problem is a joint non-convex
optimization that is intractable. To overcome this difficulty, we
decompose it into separate transmit and receive subproblems
[2], which yields the mutual information at the transmit-side

I = log2

(∣∣∣∣INs +
ρ

Ns
HFRFFBBF∗

BBF∗
RFH∗

∣∣∣∣) .
In general, the analog precoder and combining matrices,

FRF and WRF, are implemented either using analog phase
shifters or analog switches along with RF combiners/splitters.
In this work, we focus on hybrid architectures based on switch
networks and consider only the transmit-side, noting that the
proposed method is equally applicable to the receive side.

III. SWITCH BASED HYBRID PRECODER DESIGN

The general model for a hybrid precoder based on a network
of analog switches, splitters, and combiners, is depicted in
Fig. 2. Let us consider the singular value decomposition of
the channel H = UΣV∗ such that U is an Nr × rank(H)
unitary matrix, Σ is a rank(H) × rank(H) diagonal matrix
of descending singular values, and V is a Nt × rank(H)
unitary matrix. Then, the first Ns singular vectors provide the
unconstrained optimum precoder Fopt = VNs

.
The method presented in this paper is built upon the

assumption that the mmWave system and propagation channel
parameters are chosen such that a hybrid precoder FRFFBB,
sufficiently close to Fopt = VNs

, is realizable. Therefore,
we assume that the matrices INs

−V∗
Ns

FRFFBBF∗
BBFRFVNs

,
and V∗

N̄s
FRFFBB have a set of sufficiently small eigenvalues

[2]. Note that VN̄s
denotes the eigenvectors associated with

the subspace complementary to VNs
. Now, by employing

2019 27th European Signal Processing Conference (EUSIPCO)



Fig. 2. Simplified analog architecture for Hybrid MIMO beamforming with
analog switches, combiners, and splitters.

Sylvester’s determinant theorem, and Schur’s complement
identity for matrix determinants, we can approximate the
mutual information as

I(H) = log2

(∣∣∣∣I +
ρ

Nsσ2
Σ2V∗FRFFBBF∗

BBFRFV
∣∣∣∣) ,

≈ log2

(∣∣∣∣I +

[ ρ
Nsσ2Σ

2
Ns

V∗
Ns

FRFFBBF∗
BBFRFVNs

0

0 0

]∣∣∣∣) ,
= log2

(∣∣∣∣INs
+

ρ

Nsσ2
H1FRFFBBF∗

BBF∗
RFH∗

1

∣∣∣∣) , (3)

where H1 is the subchannel constructed by the first Ns singular
vectors and singular values of H.

Defining a new virtual matrix H̃ = H1FRF of size Nr×Lt

and singular value decomposition of H̃ = ŨΣ̃Ṽ
∗
, we can

maximize (3) by having FBB = ṼNs ,

I(H̃) = log2

(∣∣∣∣I +
ρ

Nsσ2
H̃FBBF∗

BBH̃
∗
∣∣∣∣)

= log2

(∣∣∣∣INs +
ρ

Nsσ2
Σ̃

2

Ns

∣∣∣∣)
= log2

(∣∣∣∣INs
+

ρ

Nsσ2
H̃1H̃

∗
1

∣∣∣∣) , (4)

where H̃1 denotes the new virtual channel representation
achieved by the first Ns eigenvalues, e.g., H̃1 = ŨNs

Σ̃Ns
Ṽ

∗
Ns

.
Now, if we restrict the rank of H̃ as rank(H̃) = Ns, then
FBB = ṼNs

= Ṽ becomes a unitary matrix, and therefore we
can specify (4) as

I(H̃) = log2

(∣∣∣∣INs
+

ρ

Nsσ2
Σ̃

2
∣∣∣∣) (5)

Hence, the problem becomes a single variable maximization,
that is finding the optimum binary matrix FRF satisfying the
rank constraint. However, the log-determinant maximization is
still a computationally expensive optimization. To address this,
we propose a lower bound on (5) in the following Theorem.

Theorem 1: Assuming that H̃ as a rank deficient matrix is
factorizable by generalized QR decomposition as H̃P = QR,
with Q,R,P being a unitary matrix of size Nr×Lt, an upper

triangular matrix of size Lt×Lt, and a permutation matrix of
size Lt × Lt, then

I(Σ̃
2
) ≥ I

(
|[R]ii|

2
)
, (6)

where |[R]ii| denotes the absolute value of th i-th diagonal
element of R.

Proof: We know from majorization theory that (see
Lemma 4.9 in [16] or [6])

Ns∏
i=1

Σ2
i ≥

Ns∏
i=1

|[R]ii|2. (7)

Therefore, we can extend this as

log2

(
Ns∏
i=1

(1 +
ρ

Nsσ2
Σ2
i )

)
≥ log2

(
Ns∏
i=1

(1 +
ρ

Nsσ2
|[R]ii|2)

)
I(Σ̃

2
) ≥ I

(
|[R]ii|

2
)

Using the properties of QR decomposition, we can write

|[R]ii|
2

= f∗RF,iAifRF,i (8)

where

Ai = H∗
1ΠH1Fi

RF
H1, ΠX = I− X(X∗X)−1X∗.

The vector fRF,i denotes the i-th column of FRF, and matrix
FiRF represents the first i columns of FRF.

In summary, the mutual information in (5) in terms of
H1FRF is seen to be lower bounded by the mutual information
given by the diagonal elements of R from a QR decomposition.
Thus, we attempt to maximize the diagonal elements of R.
Now, in many practical applications, due to specific hardware
limitations, it is desirable to impose some connectivity con-
straints on FRF in the form of a partially connected network.
Considering such connectivity constraints, and by utilizing (8),
we cast the maximization for each column of FRF as,

max
fRF,i

f∗RF,iAifRF,i (9a)

s.t 0 ≤ fRF,i ≤ 1 (9b)
diag (CFRF) ≤ c (9c)
diag (FRFQ) ≤ q (9d)

where we relax the binary constraint. Moreover, C and c are a
predefined Lt×Nt matrix, and an Lt× 1 vector, respectively
that impose a partially connected structure along the columns
of FRF. The partially connected structure along the rows of
FRF is dictated by Q and q as an Nt × Lt matrix, and an
Nt × 1 vector, respectively.

Using (9), we find fRF,i that maximizes the diagonal ele-
ments of the QR decomposition. As we are just interested in
the first Ns diagonal elements, we have an upper triangular
matrix R with Ns nonzero elements on the diagonal, and
therefore a rank of Ns [17]. Consequently, we assume that the
rank constraint is met and remove it from our formulation.
We also temporarily remove the transmit power constraint
‖FRFFBB‖2F = Ns, and reinstate it later by scaling FBB.
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The maximization of the quadratic form in (9a) as a
convex function is a non-convex problem. Sequential convex
programming (SCP) based on iteratively linearizing the convex
function is applied to reformulate the non-convex problem as
a series of convex subproblems, each of which can be opti-
mally solved using convex programming [18]. We formulate
the quadratic form maximization by linearization and use a
first-order Taylor expansion as a local approximation. Given
f(fRF,i) = f∗RF,iAifRF,i, we can write this approximation at
point `− 1 as,

f(fRF,i,f
(`−1)
RF,i ) = f(f(`−1)

RF,i ) +∇f(`−1)
RF,i )

(
fRF,i − f(`−1)

RF,i

)
= f(f(`−1)

RF,i ) +
(

(Ai + ATi )f(`−1)
RF,i

)(
fRF,i − f(`−1)

RF,i

)
.

The convex problem to be solved in the `-th step can be
expressed as:

max
fRF,i

f(fRF,i, f
(`−1)
RF,i ) (10a)

s.t 0 ≤ fRF,i ≤ 1 (10b)
diag (CFRF) ≤ c (10c)
diag (FRFQ) ≤ q. (10d)

We outline the proposed method in Algorithm 1. In this
algorithm, we give up the unitary structure of FBB and
implement two different update mthods in steps 10, and 11. It
is worth noting that the least squares update in step 11 does
not preserve the structure of the precoder in terms of equal
power transmission.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
method through simulations. We maximize the spectral effi-
ciency by maximizing the mutual information at the transmit
side, and assume that there is an ideal combiner at the receiver.
We use a clustered channel model with Ncl = 8 clusters and
Nray = 10 rays in each cluster with randomly distributed
AoDs, and AoAs sampled from a Laplacian distribution.

Algorithm 1: Switch Based Hybrid Design by QR De-
composition with Quadratic Update (SHD-QRQU)

Input : H
1 Decompose H = USV∗
2 Initialize ΠH1F1

RF
= I and FRF = 0

3 for i = 1 to Lt do
4 Initialize f(0)RF,i at random
5 for L iterations do
6 Solve (10) and update f(`)RF,i

7 end
8 Update [FRF]i = fRF,i, and Ai

9 end
10 Round FRF and Construct H̃ = FRFH1

and after decomposition update FD
BB =

(
FT
RFFRF

)−0.5 Ṽ
11 Update FLS

BB =
(
FT
RFFRF

)−1 FT
RFFopt and normalize

FBB =
√
NsFBB

‖FRFFBB‖F
Output: FRF,FD

BB,FLS
BB

We also assume that the complex amplitude of the rays are
sampled from a complex normal distribution with an average
power of unity in each cluster. The transmit and receive
antenna arrays are uniform planar arrays (UPA) with inter-
element spacing d of a half-wavelength. We assume a sector
azimuth angle of 60◦, and sector elevation angle of 30◦ at
the transmit side, while at the receive side we assume omni-
directional antennas.

For each scenario, we calculate the optimal unconstrained
precoder (OUP) achieved by the first Ns eigenmodes of the
channel. Moreover, we compare the performance to a phase-
shift network. We implement an algorithm called hybrid design
by the least squares relaxation (HD-LSR) proposed in [3] as a
fast method to design the hybrid network with phase shifters
in analog section. In the case of Ns = Lt, we implement
the greedy algorithm in [6] in switch network mode. We call
this algorithm switch based hybrid design by a unified greedy
algorithm (SHD-UG).

We then design the switch network with the proposed
algorithm, switch-based hybrid design by QR decomposition
with quadratic update (SHD-QRQU). For this method we
update FBB with both decomposition (SHD-QRQU-D), and
least squares (SHD-QRQU-LS). We also implement SHD-
QRQU for designing the switch based precoder in a partially
connected network (SHD-QRQU-PC). We only impose the
constraints along the columns and use the parameters P =
1Nt×Lt

,p = 64×1Lt
. The spectral efficiency for each value of

SNR is the averaged value of 100 random channel realizations.
Furthermore, we use the CVX package to solve the convex
optimizations in Algorithm 1 [19].

Fig. 3 shows the spectral efficiency achieved in a 256× 64
UPA for different values of SNR. The transmitter is assumed
to have access to 4 RF chains (Lt = 4). Also it is assumed
that Ns = 2 data streams are transmitted. Fig. 3 illustrates
that the proposed methods, SHD-QRQU-D, and SHD-QRQU-
LS achieve spectral efficiencies with only a small gap to
those achieved by the OUP, and HD-LSR. Considering the
significantly lower cost, power, and hardware complexity
required by such switch-based hybrid methods, this small
gap demonstrates a very good trade-off. Furthermore, the
spectral efficiency achieved in a partially connected network,
sits closely below that of the fully connected network and
provides yet lower cost, power and complexity.

Finally, we examine the performance of the proposed
method when Ns = 4 in Fig. 4. This scenario is a special
case as it is categorized as a hybrid network with Lt = Ns.
We compare the performance of unconstrained switch-based
hybrid design (SHD-QRQU) as a comprehensive solution with
that SHD-UG. By increasing Ns, the capability of the hybrid
network to approximate the optimal unconstrained precoder
slightly deteriorates. This can be observed by the increased
gap between HD-LSR, and OUP in Fig. 4. Compared to
the previous case shown in Fig. 3, the switch-based network
generally also has a larger gap to the unconstrained and
phase-shift based hybrid structures. As shown in this figure
the proposed algorithm outperforms the greedy method (SH-
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UGD), with a significantly improved performance delivered by
SHD-QRQU-U at low SNR. It is worth noting SHD-QRQU-
LS outperforms the decomposition-based update SHD-QRQU-
D at low SNRs. However as the SNR value grows SHD-
QRQU-D outperforms SHD-QRQU-LS. The QRQU based
method in a partially connected network, due to the relatively
sparse channel with respect to the number of antennas delivers
a spectral efficiency slightly lower than that of the SHD-
QRQU with almost a quarter of the active switches.

V. CONCLUSION

We presented a new switch-based precoder for mmWave
communications that decouples the problem of joint opti-
mization of an analog and digital beamformer by confin-
ing the problem to a rank constrained subspace. We then
approximated the solution through the lower bound offered
by QR factorization. We also introduced linear constraints to
include frequently used partially-connected structures. Finally
we examined the effectiveness of the proposed method using
a set of numerical examples. The results demonstrate the

feasibility of the proposed method, optimizing for a variety of
structures as well as providing an effective and comprehensive
tool in the study of different scenarios.
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