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Abstract—Recently there has been a growing interest in the
estimation of the Probability Mass Function (PMF) of discrete
random vectors (RVs) from partial observations thereof (namely
when observed realizations of the RV are limited to random
subsets of its elements). It was shown that under a low-rank
assumption on the PMF tensor (and some additional mild
conditions), the full tensor can be recovered, e.g., by applying
an approximate coupled factorization to empirical estimates of
all joint PMFs of subgroups of fixed cardinality larger than two
(e.g., triplets). The coupled factorization is based on a Least
Squares (LS) fit to the empirically estimated lower-order sub-
tensors. In this work we take a different approach by trying to
fit the coupled factorization to estimated sub-tensors in the sense
of minimizing the Kullback-Leibler divergence (KLD) between
the estimated and inferred tensors. We explain why the KLD-
based fitting is better-suited than LS-based fitting for the problem
of PMF estimation, propose an associated minimization approach
and demonstrate some advantages over LS-based fitting in this
context using simulation results.

Index Terms—Low-Rank Tensor Factorization, Probability
Mass Function (PMF), Approximate Coupled Factorization,
Kullback-Leibler Divergence (KLD), Nonnegative Tensor Fac-
torization, Canonical Polyadic Decomposition (CPD).

I. INTRODUCTION

Tensor representations and tensor factorization are gain-
ing increased popularity in the fields of signal processing,
estimation theory and machine learning, not only as tools
for multi-way data representation and analysis [1] or source
separation [2], but also (more recently) in high-order perfor-
mance analysis using high-order derivatives and moments [3]
and in statistical representation of Probability Mass Functions
(PMFs) [4]. Indeed, in recent work by Kargas et al. [4], it was
shown that when the PMF of a discrete random vector (whose
elements take values in finite alphabets) can be represented
by a low-rank tensor, such a representation can be interpreted
as a naı̈ve Bayes model, and, moreover, the full PMF tensor
can be recovered from knowledge of all of its sub-tensors of
degrees larger than 2 (e.g., triplets or quadruples).

Often in machine learning and in related applications (e.g.,
recommender systems), only partial observations of the ran-
dom vector are available, where some (or even most) of its

elements are missing in each observed realization. Under these
conditions, it may be possible to obtain empirical estimates
of all sub-tensors of a certain degree from the co-occurrence
histograms of small groups of the vector’s elements (e.g.,
triplets), but not of the entire tensor. It is therefore suggested
in [4] to estimate the full tensor by applying a low-rank
approximate coupled factorization to the empirically obtained
sub-tensors, where the criterion for the coupled factorization is
the ordinary Least Squares (LS) criterion (expressed in terms
of the sum of Frobenius norms of the differences between
the empirical sub-tensors and the implied sub-tensors of the
estimated full tensor).

While offering relatively convenient optimization proce-
dures, the LS criterion entails a conceptual drawback in this
context. In particular, it is not severely penalized when attribut-
ing an extremely small (or even zero) probability to certain
elements of the estimated PMF, even when the empirical
evidence may suggest that the respective vector values are
feasible. The Kullback-Leibler Divergence (KLD, [10]), on the
other hand, is a non-negative (asymmetric) distance measure,
denoted D(X‖Y), between any two (equal-size) PMF tensors
X and Y (see the explicit notation definition in the sequel),
which equals zero iff X = Y , and approaches infinity if an
element of Y approaches zero while the respective element of
X is nonzero.

Therefore, using the KLD as a substitute to the LS criterion
for measuring the fit between the estimated low-rank tensor
and the empirical sub-tensors is a more “natural” choice in
the context of PMF estimation. Moreover, it can be shown
that under a proper setup, the resulting KLD-based estimate
coincides with the Maximum Likelihood (ML) estimate of the
low-rank PMF from the empirical sub-tensors, unlike the LS-
based estimate1. In this paper we propose a modification of the
approximate coupled low-rank factorization approach, which
uses the KLD instead of the LS criterion, and demonstrate the
resulting improvement in the PMF estimation in a small-scale

1In fact, the LS-based estimate can be shown to approach the ML esti-
mate, and therefore the KLD-based estimate (under the same setup), only
asymptotically.
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(“toy-example”) simulation scenario.
The use of the KLD is certainly not new to Nonnegative

Matrix / Tensor Factorization (NMF / NTF) problems, and
has been proposed before, e.g., by Hansen et al. [6], Chi and
Kolda [7], and as a particular case of β-divergence also by
Cichocki and Phan [8] (see also [9]). KLD was also considered
recently by Kargas and Sidiropoulos in the context of using
CPD for learning mixtures of smooth product distributions [5].
However, in the general context of NMF / NTF, the KLD is
not associated with PMF tensors estimation, and is therefore
not constrained to have all factor matrices and loading factors
restricted to the probability simplex (see Section II for more
details). Additionally, KLD has only been considered in the
context of a single matrix / tensor factorization, but not in
an approximate coupled factorization of several sub-tensors.
Therefore, the main innovation in this work is in posing and
solving the approximate coupled factorization associated with
the PMF estimation from sample sub-tensors using the KLD
under the probability simplex constraints, and in comparing
the results to the LS-based counterpart estimates.

As an interesting, possibly unexpected by-product, we also
observed that when using an alternating-directions scheme
(decomposing the non-convex coupled factorization optimiza-
tion into a series of convex optimization sub-problems with
respect to each factor matrix separately), a significantly smaller
number of iterations (“full sweeps”) of the KLD-based opti-
mization is required, relative to the LS-based optimization.

II. PROBLEM FORMULATION

Let X = [X1, X2, . . . , XN ]T ∈ RN be a discrete
random vector with with Xn taking discrete integer values
in [1, In] (n = 1, . . . N ). We denote its joint PMF tensor
X ∈ RI1×I2×···×IN , where X (i1, i2 . . . , iN ) = Pr{X1 =
i1, X2 = i2 . . . , XN = iN}. The goal is to find a non-
negative Canonical Polyadic Decomposition (CPD) of X with
F factors, namely to find N factor matrices A1,A2 . . . ,AN

(An ∈ RIn×F ) and a “loading vector” λ ∈ RF such that

X ≈
F∑

f=1

λf ·A1(:, f) ◦A2(:, f) ◦ · · · ◦AN (:, f)

4
= [[λ,A1,A2 . . . ,AN ]] (1)

where ◦ denotes an outer product of vectors. All elements of λ
are positive, all elements of A1,A2 . . . ,AN are non-negative
and 1Tλ = 1, 1TAn = 1T , n = 1, . . . , N , where 1 denotes
an all-ones vector with context-implied dimensions (this set
of constraints is sometimes abbreviated as “confining to the
probability simplex”).

It is shown in [4] that even in the absence of an estimate
of the full X , the factors can be obtained from empirical
estimates of the joint PMF in triplets, denoted ÒXjk`, for a
sufficient number of combinations of (j, k, `) (with j < k <
`), from which the factor matrices A1,A2, . . . ,AN and the
loading vector λ can in turn be estimated by applying an
approximate coupled tensor factorization to all (empirically-
estimated) triplets-PMFs.

It is proposed in [4] to jointly factorize the triplet tensors
by minimizing a least-squares (LS) criterion

min
{An}Nn=1,λ

∑
j

∑
k>j

∑
`>k

1

2

∥∥∥ ÒXjk` − [[λ,Aj ,Ak,A`]]
∥∥∥2
F

(2)

subject to: λ > 0, 1Tλ = 1

An ≥ 0, 1TAn = 1T, n = 1, . . . , N,

where ‖ · ‖2F denotes the squared Frobenius norm (sum of all
squared elements of the enclosed tensor).

III. THE PROPOSED ALTERNATIVE

Our proposal is to substitute the LS criterion with a KLD-
based criterion, measuring the distances between the estimated
(empirical) PMF (in triplets) and the theoretical PMF implied
by the factors.

Letting X and Y denote any two 3-way PMF tensors (of
the same dimensions), the KLD between them is defined (up
to some vanishing constants) as

D(X ||Y)
4
= −

∑
i1,i2,i3

X (i1, i2, i3) log
Y(i1, i2, i3)
X (i1, i2, i3)

≥ 0, (3)

where equality holds iff the two PMFs are identical (and where
0 · log 0 and 0 · log∞ are both taken to be zeros). When X is
fixed, minimizing D(X ||Y) w.r.t. Y (subject to the probability
simplex constraints, which keep Y a valid PMF tensor) boils
down to minimizing

D(X ||Y) = C −
∑

i1,i2,i3

X (i1, i2, i3) logY(i1, i2, i3)

= C + ‖X � logY‖1 , (4)

where C is an irrelevant constant, � denotes the Hadamard
(element-wise) product, logY is interpreted element-wise and
‖ · ‖1 denotes the `1 norm of the enclosed tensor, which is
the sum of absolute values of all of its elements (which, in
our case, are all non-positive). Note that since all elements of
X are non-negative, under the non-negativity constraint on all
elements of Y , D(X ||Y) is a convex function of Y .

Returning to our joint factorization problem, our proposed
criterion is therefore defined as

min
{An}Nn=1,λ

∑
j

∑
k>j

∑
`>k

log
∥∥∥ ÒXjk` � [[λ,Aj ,Ak,A`]]

∥∥∥
1

(5)

subject to: λ > 0, 1Tλ = 1

An ≥ 0, 1TAn = 1T, n = 1, . . . , N.

Such a KLD-based criterion would attain a better fit (in
the context of PMF interpretation) to the empirical PMFs
than the LS criterion, because it would treat smaller empirical
probabilities in a different way than treating higher empirical
probabilities - unlike the LS criterion, which allows (and ac-
tually promotes) similar-size deviations from all probabilities.
For example, unlike the LS criterion, the KLD-based criterion
would forbid a solution (a factors model) that attributes zero
probability to an element of one of the tensors in which
the empirical probability is non-zero, even if that probability
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is very small (because then the KLD-based criterion would
diverge to infinity). And indeed, a non-negative probability
in an element of one of the empirical tensors means that the
respective combination of values has a positive probability of
occurrence, so it would not be reasonable (from a probabilistic
point of view) to attribute zero probability in the model for
such a combination, which means that this combination is not
feasible - in contradiction to the empirical evidence.

IV. MINIMIZATION OF THE KLD-BASED CRITERION

Our “outer” minimization strategy follows the alternating
directions minimization proposed in [4], which decomposes
the non-convex minimization in (5) into a series of convex
minimization problems w.r.t. each of the factor matrices An

and λ, separately. However, for the “inner” (convex) optimiza-
tion problems we propose a different approach, absorbing the
probability simplex’ equality constraints by re-parameterizing
the problem.

We begin with a brief description of the “outer”, alternating-
directions minimization. When minimizing w.r.t. one of the
factor matrices, say Am, alone, we assume that all other factor
matrices, as well as λ, are fixed (at the values from their latest
estimates). We then need to solve

min
Am

∑
k 6=m

∑
`>k
`6=m

∥∥∥ ÒX (1)
mk` � log

[
(A` �Ak)Diag(λ)AT

m

]∥∥∥
1

(6)

subject to: Am ≥ 0, 1TAm = 1T,

where ÒX (1)
mk` denotes the 1-mode unfolding of ÒXmk` (see

[1], [4]), � denotes the Khatri-Rao (column-wise Kronecker)
product, Diag(λ) ∈ RF×F denotes a diagonal matrix with
the elements of λ along its diagonal and ≥ for matrices
denotes elementwise inequality. Then, when minimizing w.r.t.
λ (assuming all An are fixed) we need to solve:

min
λ
−
∑
j

∑
k>j

∑
`>k

vecT
� ÒXjk`

�
· log [(A` �Ak �Aj)λ] (7)

subject to: λ > 0, 1Tλ = 1,

where vec
� ÒXjk`

�
∈ RIjIkI` denotes the vectorized form

composed of the concatenation of all columns of ÒXjk` (in
“natural” order, see [4]).

We refer to an “outer” iteration, namely to a complete
cycle through all N +1 “inner” minimization problems (w.r.t.
A1, . . . ,AN and λ) as a “sweep”. Since after each inner
minimization the overall value of the global KLD-based cri-
terion in (5) is guaranteed not to increase (and usually to
decrease) and is bounded below (by zero), convergence of the
criterion to a stationary point is guaranteed (although the point
of convergence is not necessarily the global minimum of the
criterion).

To solve the inner (convex) minimization problems we
propose a different approach than [4], as we prefer to re-
parameterize the problem in terms of (slightly) fewer param-
eters, automatically accounting for the probability simplex’

equality constraints. To this end, observe that any vector
a ∈ RK of the form a = e1 − Qb, where ek denotes
the k-th column of the K × K identity matrix, the matrix
Q ∈ RK×(K−1) is defined as

Q
4
= [e1 − e2, e2 − e3, . . . , eK−1 − eK ] (8)

and b ∈ RK−1 is an arbitrary vector, is easily seen to satisfy
the equality constraint 1Ta = 1 (since Q is a basis for the
null-space of 1T). In order for a to also satisfy the non-
negativity constraint, note that, due to the structure of Q we
have, from a = e1 −Qb,

a1 = 1− b1, a2 = b1 − b2, a3 = b2 − b3, · · ·
· · · aK−1 = bK−2 − bK−1, aK = bK−1. (9)

We therefore conclude that a ≥ 0 iff the elements of b satisfy
the ordering constraint 1 ≥ b1 ≥ b2 ≥ · · · ≥ bK−1 ≥ 0.

We can therefore re-parameterize each of the factor matrices
as An = En − QBn, where En ∈ RIn×F is an all-
zeros matrix except for all-ones on its first row, and where
Bn ∈ R(K−1)×F is an arbitrary matrix. The constrained
minimization problem (6) can then be recast in terms of Bm

as

min
Bm

∑
k 6=m

∑
`>k
`6=m

∥∥∥ ÒX (1)
mk` � log

[
C`k(Em −QBm)T]∥∥∥

1
(10)

s.t.:1 ≥ Bm(1, f) ≥ Bm(2, f) ≥ · · · ≥ Bm(K − 1, f) ≥ 0,

f = 1, . . . , F,

where C`k
4
= (A` �Ak)Diag(λ).

The derivative of the inner term (summand) of (10) w.r.t.
Bm(i, f) is given by

−
∥∥∥ ÒX (1)

mk`�
[
C`k(Em −QBm)T]�(C`k(:, f)(e

T
i − eT

i+1)
)∥∥∥

1

where � denotes element-wise division. Adding these terms
up (according to the summation in (10)) we get the deriva-
tive w.r.t. each element of Bm. Starting with any feasible
solution, e.g., Bm(i, f) = (K − i)/K for all f , we take
the following update strategy to maintain feasibility: Starting
with the strongest (positive / negative) derivative, we modify
the respective element of Bm with a nominal step-size of
some sufficiently small negative constant α times the derivative
(increasing or decreasing, depending on the sign), bounded by
its neighboring element (above or below, resp.) on the same
column of Bm - so as to maintain the ordering constraint in
(10). We then proceed through the other elements of Bm in
descending order of the absolute values of their derivatives.
Once all elements of Bm have been updated, the derivatives
are recalculated and the process is repeated until convergence
is attained.

For the minimization w.r.t. λ we take a similar strategy after
re-parameterizing λ = e1 − Qγ with γ ∈ RF−1, satisfying
1 > γ1 > γ2 > · · · > γF−1 > 0 (note that λ should be strictly
positive, hence the strict inequalities).
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V. SIMULATION EXPERIMENTS

To demonstrate the advantages of KLD-based minimization
over LS-based minimization, we present simulation results of
a small-scale “toy-example” experiment.

We generated a rank-2 (F = 2) 5-way (N = 5) PMF tensor
X of dimensions [2, 3, 4, 3, 2] using the following (arbitrarily
chosen) factor matrices

A1 =

�
0.1 0.4
0.9 0.6

�
A2 =

0.5 0.5
0.1 0.4
0.4 0.1

A3 =


0.2 0.4
0.5 0.1
0.1 0.1
0.2 0.4


A4 =

0.1 0.2
0.1 0.4
0.8 0.4

 and A5 =

�
0.5 0.2
0.5 0.8

�
(11)

and the loading vector λ = [0.7, 0.3]T.
Then T random vectors (of dimension 5) were drawn

according to the resulting PMF, with T taking the (loga-
rithmically equally-spaced) values 10,000, 25,119, 63,096,
158,489, 398,107 and 1,000,000. The empirical 3-way tensors
representing all the empirical 3-way marginal distributions
were calculated based on the drawn vectors, and the joint
factorization criteria (2) (LS) and (5) (KLD) were applied in
order to obtain estimates of the true PMF tensor X based on
all (ten) 3-way empirical tensors {X123,X124 . . . ,X345}.

We then applied alternating directions minimization (as
described in the previous section) with respect to each factor
matrix and to λ according to the two different criteria.
Both minimization procedures started with the same initial
guess, which was generated as follows. First, we find the F
largest elements (probabilities) in the full empirical tensor ÒX
and denote their values as pf and their indices vectors as
If = [i

(1)
f , i

(2)
f . . . , i

(N)
f ]T (for f = 1, . . . , F ). Then we

initialize λ = [p1, . . . , pF ]
T/
∑
pf and set the f -th column

of the initial An to all-zeros except for a 1 as its i
(n)
f -th

element (for all n = 1, . . . , N and f = 1, . . . , F ). We note that
this initialization strategy is based on knowledge of the full
empirical tensor ÒX , which is usually not available in practice
(in fact, its presumed availability obviates the need for coupled
factorization...) but since the initialization strategy is not an
issue here, we chose to use this slightly impractical scheme
in order to obtain a fair comparison between the minimization
criteria.

Figure 1 shows typical convergence patterns (of the respec-
tive criteria (2) and (5)), as a function of the sweep number
until a convergence criterion is met. Both algorithms feature
a monotonic descent, as could be expected for alternating-
directions type minimization.

In order to compare the PMF estimation performance of
the two approaches in this experiment, we first define the
following performance measures:
• LS-fit between the empirical and the true PMF:∥∥∥ ÒX −X

∥∥∥2
F

Fig. 1. Typical convergence patterns (log of the criterion vs. full iteration
[“sweep”] index) for the LS and KLD criteria. The minimization based on
the LS criterion is typically slower than the minimization based on the KLD
criterion in terms of the number of sweeps.
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Fig. 2. The (T -normalized) LS-fit (left) and KLD-fit (right) between: the
sample- and true PMF; the LS-based estimate and the sample-PMF; the KLD-
based estimate and the sample-PMF; the LS-based estimate and the true PMF;
the KLD-based estimate and the true PMF. Results are based on averaging
100 independent trials.

• LS-fit between an estimated and the empirical PMF:∥∥∥ ÒX − ��
λ̂, ÒA1, ÒA2, ÒA3, ÒA4, ÒA5

��∥∥∥2
F

• LS-fit between an estimated and the true PMF:∥∥∥X − ��
λ̂, ÒA1, ÒA2, ÒA3, ÒA4, ÒA5

��∥∥∥2
F

and, similarly,
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• KLD-fit between the empirical and the true PMF:∥∥∥X � (log ÒX − logX )
∥∥∥
1
.

• KLD-fit between an estimated and the empirical PMF:∥∥∥ ÒX � (log
��
λ̂, ÒA1, ÒA2, ÒA3, ÒA4, ÒA5

��
− log ÒX )

∥∥∥
1
.

• KLD-fit between an estimated and the true PMF:∥∥∥X � (log
��
λ̂, ÒA1, ÒA2, ÒA3, ÒA4, ÒA5

��
− logX )

∥∥∥
1
.

Figure 2 shows these normalized performance measures for
both types (LS-based and KLD-based) of estimates, vs. the
observation time (number of available independent realizations
T ). In order to elucidate the differences, the performance
measures in these plots were normalized by multiplication with
T , so that they all appear at (roughly) constant logarithmic
scales, which reflect an actual 1/T -type decrease in all of
these criteria. All the values shown in these plots are based
on averaging the results from 100 independent experiments, in
which both algorithms were applied using the same empirical
data.

The worst fit is observed between the empirical and the
true PMF, both in terms of the LS fit and in terms of the
KLD fit. This is rather expected, as the low-rank estimates
are expected to be closer than the raw empirical tensor to
the true (low-rank) tensor, due to the “denoising” effect of
the low-rank approximation. Observing the fit of the estimates
to the empirical tensor, we note that, as could be expected,
each estimate outperforms the other under its “own” criterion,
namely, under the LS-fit performance measure, the LS-based
estimate offers a better fit (to the empirical PMF) than the
KLD-based estimate - and vice-versa. However, when it comes
to fitting the true tensor, the KLD-based estimate is seen to
provide a better fit not only under the KLD-fit performance
measure, but also under the LS-fit performance measure. Note
that there is no contradiction to common-sense here, since
the estimation criterion is not based on fitting the true tensor,
but only on fitting the empirical tensor (or, rather, all triplets
sub-tensors of this empirical tensor) - the obvious conclusion
here is that (at least in this experiment) KLD-based estimation
outperforms LS-based estimation with respect to estimating
the true PMF, under both performance measures.

As a final note we show in Figure 3 the average number
of full iterations (sweeps) to convergence vs. the observation
length T for the two approaches. The KLD-based minimiza-
tion is seen to converge faster (at least in this example) than
the LS-based minimization. Also, as T gets larger, the required
number of sweeps (for both methods) increases, possibly
due to the improving accuracy of the sample-PMF, which
enables a better fit of the low-rank model, resulting in a
longer refinement (the convergence (stopping) criterion is a
streak of L = 10 sweeps in which the change of the log
of the minimized criterion remains below a threshold). We
note, however, that the computation complexity per sweep is
somewhat higher for the KLD-based minimization than for the
LS-based minimization.

10
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5

10
6

T

200

250

300

350
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500

Average number of full iterations ('sweeps')

LS-fit

KLD-fit

Fig. 3. The average number of sweeps (averaged over 100 independent
trials) required for convergence of the two criteria in alternating-directions
minimization. The KLD-based estimation is seen to feature faster convergence
(in terms of the number of sweeps) than the LS-based estimation (whereas
the running time per iteration for KLD is about 50% higher than for LS).

VI. CONCLUSION

We have addressed the problem of estimating a low-rank
PMF tensor (of a discrete random vector taking values over a
finite alphabet) from empirical sub-tensors, using approximate
coupled factorization. The main message of our work is that
a KLD-based criterion for the approximate joint factorization
is better suited to this particular estimation problem than the
LS-based criterion (used in [4]) and attains a more accurate
estimate of the true tensor, not only in terms of the resulting
KLD fit, but also in terms of the resulting LS-fit (which is
also the mean square estimation error). In future work we
intend to show that the KLD-based estimate coincides (under
a slight change of the paradigm) with the ML estimate w.r.t.
the (partial) observations of the random vector’s realizations.
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