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Abstract—This paper presents an effective method to address
the inverse problem of Mel-frequency cepstral analysis, and
describes how to reconstruct the speech waveforms from Mel-
frequency cepstral coefficients (MFCCs) directly. To exploit the
sparse characteristics of speech in the frequency domain, an
iteratively reweighted ℓ2 minimization method is proposed to
cope with the under-determined nature of the reconstruction
problem. The lost phase information during Mel-frequency
cepstral analysis procedure is recovered by the inverse short-
time Fourier transform magnitude algorithm. Experiments are
conducted over the TIMIT database and evaluated by several
different kinds of measures. Experimental results demonstrate
that the proposed method recovers speech with high articulation
and intelligibility. Specifically, it sounds very close to the original
speech when using the high-resolution MFCCs, the average STOI,
PESQ score reaches 93% and 4.0, respectively. This method could
be easily used for MFCC codec at low bit rate.

Index Terms—Speech reconstruction, MFCCs, Iteratively
reweighted ℓ2 minimization

I. INTRODUCTION

The Mel-frequency cepstral analysis of speech signals,
which converts the speech waveforms to MFCCs, is an im-
portant homomorphic signal processing technique. MFCCs are
widely used in the applications of speech formant analysis,
automatic speech recognition and speaker recognition, etc [1].
In recent years, MFCC codec was proposed to encode the
speech signal through quantization of MFCCs, which provides
a promising new approach for speech coding throughout 600-
4800 bps [2] [3]. In the MFCC codec, the challenging inverse
problem of Mel-frequency cepstral analysis, i.e., reconstruct-
ing the speech waveforms from MFCCs, is a key step, which
attracts growing attention of researchers [4].

Generally speaking, there are two difficult problems for
reconstructing the speech waveforms from MFCCs. Firstly,
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the phase information is lost when computing the power spec-
trum of speech. In addition, the Mel-filter, i.e., the Mel-scale
weighting matrix, is not invertible. Based on the sinusoidal
model, techniques were proposed in [5] [6] to reconstruct the
speech waveforms from MFCCs. However, additional pitch
and voicing decision information are indispensable. These
papers reported that “natural sounding, good quality intelli-
gible speech” was obtained. Similarly, the ETSI standardized
the extended DSR as ES 202 211 and ES 202 212 [7]
[8]. Experimental results show that the reconstructed speech
produced by these standards is highly intelligible under clean
and noisy background conditions, the Diagnostic Rhyme Test
(DRT) and Transcription Test (TT) scores meet or exceed
the US Federal standard Mixed-Excitation Linear Predictive
(MELP) codec operating at 2400 bps. In addition, a new
algorithm for speech reconstruction solely from MFCC vectors
was proposed in [9]. This algorithm predicts pitch frequency
and voicing information by exploiting correlation between the
fundamental frequency and the spectral envelope. The speech
waveforms is then reconstructed with the method in DSR back-
end, which is similar to [7] [8].

Different from the earlier investigations, the authors in
[2], [4] proposed a simple and novel speech reconstruction
method. In this novel method, the power spectrum is directly
inverted from the mel-filtered spectrum using the Moore-
Penrose pseudo-inverse of the Mel-scale weighting matrix,
then the inverse short-time Fourier transform magnitude (LSE–
ISTFTM) algorithm is utilized to estimate the phase spectrum
and recover the speech waveforms finally [10]. As for that
the Mel-scale weighting matrix is wide, it demonstrates that
the Mel-filter equals to an under-determined system so that
there exists infinitely many solutions. The Moore-Penrose
pseudo-inverse forms a least square (LS) solution, i.e., the
solution has the minimum Euclidean norm. However, the
physical meaning of the LS solution has not been successfully
interpreted for speech processing yet. Actually, the distribution
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of the power spectrum of speech is not flat, this is because the
spectral power at the harmonic frequencies and formants is
apparently higher than other frequency regions. Consequently,
it is reasonable to think that the power spectrum of speech
is sparse. This phenomenon will provide important a prior
information for recovering the power spectrum of speech much
precisely. In our previous work, we used the ℓ1 minimization
technique to recover speech spectrum [11], to further exploit
the sparse characteristic of speech in the frequency domain, a
much simpler iteratively reweighted ℓ2 minimization method
is proposed to cope with the under-determined nature of
the reconstruction problem in this paper. The quality of the
reconstructed speech via this new algorithm is efficiently
improved over the conventional methods used in [2]– [4].

The rest of this paper is organized as follows. In section 2,
we provide a prologue that defines the problem formulation
of speech reconstruction from MFCCs. Then, we propose the
method of iteratively reweighted ℓ2 minimization to recover
the speech signal precisely in section 3. The results of the
experimental evaluation over the TIMIT database are outlined
in section 4. Finally, section 5 concludes our work.

II. PROBLEM FORMULATION

The extracting procedure of MFCCs begins with enframing
the speech waveforms x(n) by a window w (n),

xm (n) = x (mR+ n)w (n) (1)

where L(0 ≤ n ≤ L− 1) is the window length, R is the frame
shift, m is the frame index. Then, The speech frame can be
concisely denoted as,

x = [xm (0) , xm (1) , ..., xm (L− 1)]
ᵀ (2)

The power spectrum of each speech frame is,

y = |F {x}|2 (3)

where F {x} is the N-point DFT of x, |·| denotes the modulus
of the complex number.

The latter N/2− 1 elements of y will be discarded due to
the symmetry. Then, the power spectrum is Mel-filtered by a
set of weighting functions, i.e., the Mel-scale weighting matrix
Φ ∈ RK×(N/2+1), where K is the number of Mel-filter bands.
Generally, Φ is designed based on human perception of pitch
frequency and implemented in the form of a bank of filters,
each filter is with a triangular frequency response, as is shown
in Fig. 1. Finally, MFCCs are computed through the log and
discrete cosine transform,

f = DCT{log(Φy)} (4)

The problem of speech reconstruction from MFCCs is trying
to estimate x from f .

Fig. 1. The frequency response of the Mel-filter.

III. SPEECH RECONSTRUCTION FROM MFCCS

A. The conventional speech reconstruction method

As is shown in (4), it is easy to see that the DCT and
log operations are all invertible except for the Mel-filter.
Therefore, the core of recovering the speech waveforms from
MFCCs is to estimate the power spectrum. Conventionally, the
ℓ2 norm criteria is often used [2], [4],

(L2) min∥y∥2 subject to Φy = z (5)

where z is computed from f by z = exp (IDCT {f}),
IDCT {·} and exp(·) denotes the inverse discrete cosine trans-
form and element-wise exponential operation, respectively.

By solving the (L2) problem, a minimal ℓ2 norm solution
is formed,

ŷ = Φ†z = Φᵀ(ΦΦᵀ)−1
z (6)

where Φ† denotes the Moore-Penrose pseudo-inverse of Φ.

B. The proposed method

It is worth noting that the power spectrum of speech is
sparse, especially for the voiced speech. The spectral power
at the harmonic frequencies and formants is apparently higher
than other frequency regions. This important a prior informa-
tion will be beneficial for recovering the power spectrum of
speech much precisely.

Inspired by the FOCUSS algorithm [12], we can recover the
power spectrum exactly by minimizing the weighted ℓ2 norm,

(WL2) min ∥W−1y∥2 subject to Φy = z (7)

where W is a diagonal matrix, which aims to enhance the
sparsity of the recovered power spectrum. Specifically, the
diagonal elements of W are the (1−p/2)-power of recovered
y at last iteration (0 ≤ p ≤ 2).

By introducing a new variable yw = W−1y, where W is
invertible, we can rewrite (7) as follows,

min ∥yw∥2 subject to ΦWyw = z (8)

Then, the optimal solution of yw is,

ŷw = (ΦW )†z (9)
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As for W is invertible, the closed-form solution of y in (7)
is derived as,

ŷ = Wŷw = W (ΦW )†z (10)

In summary, the iteratively reweighted ℓ2 minimization
(IRLM) method for recovering the power spectrum is shown in
algorithm1. To ensure the non-negativity of recovered power
spectrum, we use the absolute value of y as the output.

Algorithm 1 Power spectrum reconstruction via the IRLM
method.
Input: Φ,z
Output: Estimate of (y)
1: Initialization: W = I,y(0) = Φ†z, k = 0,△y = 1e8,

p = 1, ε = 1e−4, δ = 1e−6,M = 20
2: while k ≤ M,△y ≥ δ do
3: // Line 4 updates W :
4: W (k+1) = diag

(
(|y(k)|+ ε)(1−p/2)

)
5: // Line 6 updates y:
6: y(k+1) = W (k+1)(ΦW (k+1))†z
7: // Line 8 computes the variation of y, △y:
8: △y = ∥y(k+1) − y(k)∥2
9: k = k + 1
10: end while
11: Output (|y|)

After the power spectrum of speech is recovered by the
IRLM method, the next important step is to recover the
lost phase information. Since the LSE–ISTFTM algorithm
is simple, it effectively estimates the phase spectrum via
modified DFT and IDFT [10]. Consequently, we also use it
to recover the lost phase information. Coupling the estimated
phase spectrum with the recovered amplitude spectrum will
result in a time-domain estimate of the speech frame. Finally,
the speech waveforms can be reconstructed via an overlap-add
procedure, as is shown in Fig. 2.

IDCT{·} exp(·) IRLM

LSE-

ISTFTM

Overlap-

add

MFCCs

Fig. 2. Diagram of speech reconstruction from MFCCs.

IV. EXPERIMENTAL RESULTS

A. Dataset and evaluation metrics

In the following experiments, we selected 90 speech ut-
terances spoken by 15 males and 15 females from the TIMIT
database. Each utterance is about 3 seconds in duration, which
is down-sampled to 8 kHz. The speech signal is enframed
to 256 samples with a hamming window, overlapped with
128 samples. Similar to [2], [4], Φ is derived from a num-
ber of triangular weighting filters, which is linearly spaced

over 0–1kHz, logarithmically spaced over 1–4kHz. We set
L = 256, R = 128, N = 256,K = 10, 20, ..., 70, respectively.
The conventional ℓ2 minimization method (LM) used in [2]-
[4] is involved for comparison in the tests.

To evaluate the proposed method objectively, four different
kinds of measures are used. The average short-time objective
intelligibility (STOI) score illustrates the intelligibility [13],
while the perceptual evaluation of speech quality (PESQ) score
illustrates the overall quality of speech [14]. The cepstral dis-
tance and frequency-weighted segmental SNR (fwsegSNRs)
are two other popular objective measures for speech processing
[15]. Except for the cepstral distance measure, higher value in-
dicates better performance. To encourage reproducing similar
experimental results, we provide the source codes here: https :
//ww2.mathworks.cn/matlabcentral/fileexchange/
53186− invmfccs.

B. Parameter specification

In algorithm1, there are four parameters to specify, i.e. p,
ε, δ and M. Empirically, the maximum number of iterations
M and the error tolerance δ are specified as 20 and 1e−6,
respectively, which is adequate for the IRLM method to
achieve a stationary solution. In addition, ε should be specified
so that the weighting matrix W avoids being singular. We
specify it as 1e−4 empirically. Given different choices of p,
we conduct the experiments over the dataset described in 4.1.
The experimental results are shown in Fig. 3.
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Fig. 3. Comparison on the quality of the recovered speech in terms of PESQ
score for different choice of p.

From Fig. 3, we can see that p = 1 gives the best speech
quality in terms of PESQ score. Therefore, p will be fixed to
this value for the IRLM method in the following experiments.

C. Performance evaluation

The results of the performance evaluation using the objec-
tive measures are shown in Figures 4–5 and Tables 1–2. It is
illustrated that the IRLM method achieves substantially higher
fwsegSNRs, STOI, PESQ score and lower cepstral distance
than the conventional LM method, which demonstrates that
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the speech quality is much better. Especially, the improvement
is dramatic for female utterances. For instance, the average
fwsegSNRs improvement is 0.803dB for male utterances while
it is 2.778dB for female utterances, the average PESQ score
improvement is 0.31 for male utterances while it is 0.94 for
female utterances. The main reason for the gender differences
is that the female utterance is much sparser in the frequency
domain. However, the conventional LM method does not
fully exploit the sparse characteristic through optimizing the
ℓ2 norm. When observing the spectrogram of the speech
recovered by the LM method, we will find that the harmonic
structure, especially in the low frequency region, is severely
“smeared”. The smeared amplitude spectrum degrades the
articulation of the reconstructed speech.
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Fig. 4. Comparison on the cepstral distance.
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Fig. 5. Comparison on the fwsegSNRs.

In addition, we also conduct the subjective A/B listening
tests by four listeners. The test results also demonstrate
that speech recovered by the IRLM method is clearer and
intelligible than those corresponding to the LM mehtod. Also,
the recovered speech sounds very close to the original speech
when using the high-resolution MFCCs. For instance, when
K = 50, the STOI, PESQ score is beyond 93% and 4.0,

TABLE I
COMPARISON ON THE STOI SCORE (%).

K LM IRLM
Male Female Avg. Male Female Avg.

10 76.40 72.29 74.35 79.89 76.53 78.21
20 83.00 79.28 81.14 84.90 86.91 85.91
30 86.18 83.18 84.68 88.54 93.22 90.88
40 88.89 85.95 87.42 91.28 94.93 93.11
50 90.08 88.18 89.13 92.55 95.41 93.98
60 91.53 90.17 90.85 93.23 95.93 94.58
70 93.25 95.63 94.44 93.44 96.13 94.79

TABLE II
COMPARISON ON THE PESQ SCORE.

K LM IRLM
Male Female Avg. Male Female Avg.

10 2.197 1.431 1.805 2.510 1.602 2.056
20 2.645 1.821 2.233 2.798 2.277 2.538
30 2.953 2.180 2.567 3.216 3.129 3.173
40 3.275 2.422 2.849 3.720 3.506 3.613
50 3.483 2.658 3.071 4.061 3.952 4.007
60 3.851 2.998 3.425 4.234 4.134 4.184
70 4.222 3.682 3.952 4.270 4.144 4.207

respectively. Consequently, it is reasonable to believe that
the sparse priors is very important for speech reconstruction.
In reality, the IRLM method successfully exploits the sparse
characteristic through iteratively reweighted optimization. As
a result, it achieves substantially better performance.

V. CONCLUSION

In this paper, we propose a simple and effective method
to recover speech from MFCCs. This method successfully
exploits the sparse characteristic of the speech spectrum via
iteratively reweighted ℓ2 minimization. Extensive evaluations
over the TIMIT database have shown that the quality of the
recovered speech is efficiently improved when compared to the
output of the conventional method. Experimental results also
verify that the sparse priors of speech in the frequency domain
is important for speech reconstruction with high quality. This
proposed method is easily embed into MFCC codec.

It is expected that the performance could be improved
further. For example, speech reconstruction from MFCCs or
mel-spectrum using neural networks is currently an active
topic in speech synthesis and low rate coding [16] [17]. Also,
the LSE–ISTFTM speech waveform synthesizing method is
ripe for improvement since the LSE–ISTFTM outputs may
suffer from audible artifacts. Consequently, we are planning
to explore high-quality mel-spectrum inversion method using
deep neural networks in future work.
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