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Abstract—The detrended fluctuation analysis (DFA) is widely
used to estimate the Hurst exponent. Although it can be out-
performed by wavelet based approaches, it remains popular
because it does not require a strong expertise in signal processing.
Recently, some studies were dedicated to its theoretical analysis
and its limits. More particularly, some authors focused on the
so-called fluctuation function by searching a relation with an
estimation of the normalized covariance function under some
assumptions. This paper is complementary to these works. We
first show that the square of the fluctuation function can be
expressed in a similar matrix form for the DFA and the variant
we propose, called Continuous-DFA (CDFA), where the global
trend is constrained to be continuous. Then, using the above
representation for wide-sense-stationary processes, the statistical
mean of the square of the fluctuation function can be expressed
from the correlation function of the signal and consequently
from its power spectral density, without any approximation. The
differences between both methods can be highlighted. It also
confirms that they can be seen as ad hoc wavelet based techniques.

Index Terms—filter, interpretation, Hurst, DFA, CDFA.

I. INTRODUCTION

In many applications such as speech processing, autore-
gressive moving average (ARMA) processes are often used
to model the data. In this case, the correlation function,
rτ , with τ the lag, decays exponentially to zero. As

∑
τ rτ

is absolutely summable, these processes are short-memory.
However, in statistics, econometrics and finance [5], the cor-
relation function may decay slower than exponentially. In
these applications, the ARMA model is no longer well-suited.
Long-memory models must be considered: the autoregressive
fractionally integrated moving average (ARFIMA) models [7]
[9] can be used as well as the fractional Gaussian noise which
is a kind of 1/f noise.
One of the earliest studies mentioning that time series may
exhibit long-range dependence (LRD) is based on the Hurst
exponent, denoted as H [17]. Thus, a process is said to have
LRD if 0.5 < H < 1 whereas 0 < H < 0.5 corresponds to
anti-persistent processes. For a Brownian noise, a pink noise
and a white noise, H is equal to 0.5, 0 and −0.5 respectively.
Two main families of approaches exist to estimate it:
1. Frequency-domain estimators can be used and aim at
analyzing the power spectral density (PSD) of the time se-
ries [27]. This is for instance the case of the local Whittle

method, the periodogram method, the wavelet-based method
[1] and the semi-parametric method [4] [18]. More recently,
authors have proposed solutions based on the empirical mode
decomposition (EMD) [25] or the fractional Fourier transform
[27]. Some comparative studies such as [6] have been also led.
2. Time-domain estimators can be used. They include the
rescaled range analysis, the aggregated variance method, the
absolute-value method and the variance-of-residuals method.
The reader may refer to [28] for instance.
In 1992, Peng et al. suggested using the fluctuation analysis
(FA) to estimate the Hurst exponent of a pure mono-fractal
time series [21]. Then, the detrended fluctuation analysis
(DFA) [22] has shown good performance. Its first step is to
define the trend of the integrated signal. This latter consists
of discontinuous local trends modeled by straight lines of
length N . However, as recalled in [14], there are many other
ways to obtain the global trend of a signal. This is the
reason why several variants of the DFA exist. To name a
few, the adaptive fractal analysis (AFA) [24] a posteriori
corrects the discontinuities. Tarvainen’s method [29] is based
on a regularized least-squares (LS) criterion to obtain the local
trends. Note that the trend extraction is similar to the so-called
Hodrick-Prescott filtering, widely used in econometrics [8].
Finally, the detrended moving average (DMA) is based on
a low-pass filtering of a signal in order to obtain the trend.
In its standard version, the filter has a causal finite-impulse
response of length NDMA [2]. Some variants called centered
moving average and weighted moving average of order l [31]
have been proposed and are respectively based on a non-causal
impulse response or an infinite-impulse response. All these
methods provide the so-called scaling exponent, denoted α,
which is related to the Hurst exponent, as explained below.
A great deal of interest has been paid to the DFA and the
DMA, especially in the field of meteorology, stock market
prediction, biomedical to analyze heart-rate variability [23],
breathing pattern [19], voice pathology [3] and EEG analysis
[26]. It should be noted that the practitioner using these
methods also considers other nonlinear dynamical system
analysis techniques [20] as well as the sample entropy and
the multi-scale entropy to characterize the recorded signals or
time series. Even if the DFA and the DMA can suffer some
drawbacks and can be outperformed by other approaches based
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on wavelets or the local Whittle method, they can be used by
people who do not have advanced skills in signal processing
and statistics because the methods are only based on regression
and linear filtering. This probably explains their popularity and
the fact that there is still an active research on them. Thus, fast
versions have been developed [30]. Multifractal aspects [13]
as well as theoretical studies on the DFA and DMA [10]–[12]
[15] [16] have been done for the last years. More particularly,
in [10], by assuming that the number of segments is large
enough, by supposing that the signal is wide-sense stationary
(w.s.s.) and ergodic and by making some approximations such
as replacing infinite temporal summations by finite sums,
Höll et al. aimed at expressing the square of the so-called
fluctuation function as a function of the normalized covariance
function of the signal. Kiyono et al. analyzed the single-
frequency responses of the DFA and the higher-order DFA [15]
as well as the centered DMA [16]. They concluded that for
stochastic processes whose PSD is a function of the frequency
f of the form f−λ, the higher-order DFA is convenient to
estimate α as long as α = λ+1

2 .
In this paper, we propose a matrix formulation of the square
of the fluctuation function for both the DFA and its variant,
called Continuous-DFA (CDFA), where the global trend is
constrained to be continuous. Provided that the signal under
study is w.s.s., its statistical mean is then expressed from the
correlation function without any approximation. At this stage,
both methods can be compared from a filtering point of view.
Therefore, we can highlight the differences between them with
respect to the selection of N .
The remainder of this paper is organized as follows: in section
II, the main steps of the DFA and the CDFA are briefly
described. In section III, a comparative analysis is done.
In the following, Ij is the identity matrix of size j. 1j×k and
0j×k are matrices of size j × k filled with ones and zeros
respectively. Jj = Ij − 1

j1j×j , diag([.], j) is a matrix whose
jth diagonal is equal to [.]. diag(11×N−1, 1) is hence the
square matrix of size N whose 1st sub-diagonal above the
main one has its elements equal to 1. Finally, Cj,k is a matrix
of size (j,M) so that Cj,k = [0j×k Ij 0j×(M−(j+k))].

II. DFA VS CDFA

Let us describe the main steps of the DFA and the CDFA when
the M samples {y(m)}m=1,...,M of the signal are available.

A. Computation of the profile

The profile, i.e. the integrated signal, is computed as follows:

yint(m) =
m∑
i=1

(y(i)− µy) (1)

with µy = 1
M

∑M
m=1 y(m) the mean of the signal y.

Let Y and Yint be two column vectors storing the samples
{y(n)}n=1,...,M and {yint(n)}n=1,...,M respectively. Given
HM =

∑M−1
r=0 diag(11×M−r,−r) a low triangular matrix

filled with ones, one has :

Yint = [yint(1), ..., yint(M)]T = HMJMY (2)

Therefore, the first LN elements Yint can be expressed as:

Yint(1 : LN) = [yint(1), ..., yint(LN)]T (3)
= CLN,0Yint =

(2)
CLN,0HMJMY

B. Estimation of the trend of the profile
1) With the DFA [22]: the profile is split into

L non-overlapping segments of length N , denoted as
{yint,l(n)}l=1,...,L with n ∈ [[1;N ]]. As M is not necessarily a
multiple of N , the last M−LN samples of the profile are not
taken into account. The lth local trend, which is the trend xl of
the lth segment yint,l, is modeled as a straight line ∀l ∈ [[1;L]]
and ∀n ∈ [[1;N ]]:

xl(n) = al,1[(l − 1)N + n] + al,0 (4)

By respectively denoting Xl and θl =
[
al,0 al,1

]T
the N × 1

vector storing the values of xl(n) and the parameter vector
∀l ∈ [[1;L]], one has:

Xl = Alθl (5)

where Al is a N × 2 matrix whose first column corresponds
to a vector of 1 and whose second column is defined by the
set of values {(l − 1)N + n}n=1,...,N .
Let ΘDFA =

[
θ1 . . . θL

]T
be the parameter vector of size

2L × 1, and ADFA the (LN × 2L) block diagonal matrix
defined from the set of matrices {Al}l=1,...,L. In this case, the
parameters defining the local trends satisfy:

arg min
ΘDFA

∣∣∣∣∣∣CLN,0Yint −ADFAΘDFA

∣∣∣∣∣∣2 (6)

Therefore, the estimated parameter vector and the trend vector
TDFA = ADFAΘ̂DFA satisfy:{

Θ̂DFA = (ATDFAADFA)−1ATDFACLN,0Yint
TDFA = ADFA(ATDFAADFA)−1ATDFACLN,0Yint

(7)

2) With the CDFA: Instead of a posteriori correcting the
discontinuities as done in the AFA, we suggest a priori
introducing a constraint of continuity between local trends
by presenting the so-called CDFA. For the L segments un-
der study, our purpose is to ensure continuity between the
consecutive local trends ∀l ∈ [1;L − 1]. Therefore, there are
two possibilities: xl+1(1) = xl(N + 1) or xl+1(0) = xl(N).
Given (4), defining the constraints amounts to minimizing the
following criterion:

J(a1,1, .., aL,1, a1,0) =
N∑
n=1

(yint(n)− a1,1n− a1,0)2 (8)

+
L∑
l=2

N∑
n=1

[yint((l − 1)N + n)− al,1[(l − 1)N + n]

− a1,0 −
l−1∑
j=1

β(j)(aj,1 − aj+1,1)]2

with β(l) = lN + 1. To rewrite it in a matrix form, let the
vector of parameters be defined as follows:

ΘCDFA = [a1,1, .., aL,1, a1,0]T (9)
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In addition, let us introduce ACDFA of size LN × (L + 1)
whose first N rows, ACDFA(1 : N, 1 : L+ 1), are given by:

ACDFA(1 : N, 1 : L+ 1) =


1 0 · · · 0 1

2
... 1

...
...

...
N 1

 (10)

and ∀l ∈ [2;L− 1] :

ACDFA((l − 1)×N + 1 : lN, 1 : L+ 1) = (11)
β(1) N · · · N lN + 1− β(l) 0 · · · 0 1

β(1) N · · · N lN + 2− β(l)
...

...
...

...
...

...
...

β(1) N · · · N︸ ︷︷ ︸
l−2

(l + 1)N − β(l) 0 · · · 0︸ ︷︷ ︸
L−l

1


The criterion (8) becomes:

J(a1,1, .., aL,1, a1,0) =
∣∣∣∣∣∣CLN,0Yint −ACDFAΘCDFA

∣∣∣∣∣∣2 (12)

Therefore, the vector of the estimated parameters and the trend
vector are equal to:{

Θ̂CDFA = [ATCDFAACDFA]−1ATCDFACLN,0Yint

TCDFA = ACDFA[ATCDFAACDFA]−1ATCDFACLN,0Yint
(13)

C. Computation of the residual
In the remainder, the subscript • denotes the method that

is considered, i.e. DFA or CDFA. The residual vector R• =
CLN,0Yint−T• of the projection of CLN,0Yint onto the space
spanned by the columns of A• can be expressed as follows:

R• =
[
ILN −A•(AT•A•)−1AT•

]
CLN,0Yint (14)

Let B• be equal to
[
ILN − A•(AT

•A•)−1AT
•
]
. By combining

(2) and (14), this leads to:

R• = B•CLN,0HMJMY (15)

D. Computation of the square of the fluctuation function
Let us now define the following M ×M matrix:

Γ• =
1

LN
JTMHTMC

T
LN,0B

T
• B•CLN,0HMJM (16)

Using the properties of the trace of a matrix, the power of the
residual F 2

• (N) can be expressed as:

F 2
• (N) = Tr(Γ•Y Y

T ) (17)

E. Estimation of α
As F•(N) ∝ Nα [21], log(F•(N)) is plotted as a linear

function of log(N). The goal is to search a straight line fitting
the log-log representation. The quantity α is its slope and
is estimated in the LS sense. Then, H = α − 1, since the
integration adds 1 in the estimation of α.
In the following, using this matrix presentation, let us first
express the power of the residual from the correlation function
of the process under study and consequently from its PSD,
before comparing both methods.

III. COMPARATIVE STUDY

A. Link between the power of the residual and the PSD of the
process under study

Let us rewrite (17) as follows:

F 2
• (N)=

M∑
k=1

Γ•(k, k)y2(k) (18)

+
M−1∑
r=1

M−r∑
k=1

[Γ•(k, k + r) + Γ•(k + r, k)]y(k)y(k + r)

Assuming that y is w.s.s and taking the statistical mean of
(18), one has:

E[F 2
• (N)] =

M−1∑
r=−M+1

Tr(Γ•, r)Ry,y(r) (19)

where Ry,y(r) is the correlation function of the process y
and Tr(Γ•, r) denotes the rth diagonal of the matrix Γ•.
As the correlation function for real signals is symmetric and
by denoting gΓ•(r) = Tr(Γ•, r), the above equation can be
expressed as result of a convolution as follows:

E[F 2
• (N)] = gΓ• ∗Ry,y(τ)|τ=0 (20)

Given the Wiener-Khintchine theorem and the properties of
the inverse Fourier transform (TF−1), E[F 2

• (N)] can be
expressed from the PSD of y, denoted as Syy(f):

E[F 2
• (N)]= TF−1

(( M−1∑
r=−M+1

Tr(Γ•, r)e
−j2πfnr

)
Syy(f)

)∣∣
τ=0

= TF−1
(

Ψ•(f)Syy(f)
)∣∣
τ=0

(21)

In (21), Ψ•(f) =
∑M−1
r=−M+1 Tr(Γ•, r)e

−j2πfnr

corresponds to the Fourier transform of the sequence
{Tr(Γ•, r)}r=−M+1,...,M−1. Let us look at the properties
of the latter: first of all, as it is real and even, Ψ•(f) is
necessarily real and even. Moreover, as Γ• is a Gramian
matrix since it is the product between 1√

LN
B•CLN,0HMJM

and its transpose, the element Γ•(i, j) located at the ith row
and the jth column of Γ• corresponds to the scalar product
between the ith and the jth rows of 1√

LN
B•CLN,0HMJM .

Given the properties of the scalar product, one has:

|Γ•(i, j)| ≤ |Γ•(i, i)| (22)

As a corollary, using the inequality (22), one has:

|Tr(Γ•, r)| ≤
M−r∑
k=1

|Γ•(k, k + r)| ≤
M−r∑
k=1

Γ•(k, k)

≤
M−1∑
k=1

Γ•(k, k) = Tr(Γ•, 0) = Tr(Γ•)

In the above, note that Tr(Γ•) corresponds to the square of
the Froebenius norm of the matrix Γ•. It is necessarily positive.
As a consequence, the sequence can be seen as the convolution
of a vector with its flipped version and its Fourier transform
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Ψ•(f) is necessarily positive. Therefore it can be seen as
the PSD of the signal y filtered by a filter whose transfer
function Hfilter(z) satisfies: Ψ•(f) = |Hfilter(z)|2z=exp(jθ),
with θ = 2πf/fs the normalized angular frequency.
Consequently, we can conclude that E[F 2

• (N)] corresponds to
the correlation function of the filter output calculated for the
lag equal to 0, i.e. the power of the filter output.

B. Illustrations and comments

Let us study the influence of N on ΨDFA(f) and ΨCDFA(f).
Using (21) and the expressions of ΓDFA and ΓCDFA, we
noticed:
1. The null frequency is always rejected, which is consistent
with the purpose of detrending as shown in Fig. 1. According
to the simulations we carried out, the orders of magnitude
of ΨDFA(0) and ΨCDFA(0) are 10−16 and 10−15. When
N = 3, the DFA acts as a high-pass filter whereas it exhibits
two resonances at ±fN,DFA for larger values of N . The CDFA
always acts as a band-pass filter characterized by the resonance
frequencies ±fN,CDFA. In the following, let bw• be the
-3 dB bandwidth1 of the filter associated to Ψ•.

Figure 1. Comparison of the filtering induced by the DFA and the CDFA for
N = 3, N = 5 and N = 9.

2. As depicted in Fig. 2, the larger N , the spikier the
resonances of the frequency responses. The -3 dB bandwidth
decreases when N increases. In addition, the resonance fre-
quencies also move to low frequencies when N increases.
The bandwidths and resonance frequencies of the filters cor-
responding to the DFA and the CDFA are clearly different
for small values of N , but they tend to be the same as N
increases.
3. For any N , ΨCDFA(f) is spikier and larger than ΨDFA(f),
for most of the frequencies. See Fig. 1 where three values of
N are presented for the sake of clarity. In addition, the log-
spectral distance between ΨDFA(f) and ΨCDFA(f) based on
FFT with zero padding, depicted in Fig. 3, decreases when N

1It corresponds to the frequencies for which 10 log
Ψ•(f)

Ψ•(fN,•)
> −3

Figure 2. Evolution of bw• (top) and fN,• (bottom) of both filters as a
function of log(N).

increases. This means that the DFA and the CDFA tend to
have the same behaviour when N increases.

Figure 3. Evolution of the Log-spectral distance (LSD) between ΨDFA(f)
and ΨCDFA(f) as a function of log(N).

C. Comparing the DFA and the CDFA with a toy example

Let us estimate the Hurst coefficient of a w.s.s. zero-mean
white noise to illustrate the differences and the similarities
between the DFA and the CDFA. In Fig. 4, log(F (N))
is represented as a function of log(N), as done in step
II-E of both methods. The difference between the values of
log(F•(N)) obtained with the DFA and the CDFA decreases
as N increases. It is coherent with the analysis we did in the
previous section, especially with Fig. 3. Then, the slope α
-and consequently H- depends on the values of N that are
considered. They tend to be the same if large values of N are
used. In Fig 4, an example is given for one realization, where
α is computed with the DFA or the CDFA and with small or
large values of N . Then, given Table I, the CDFA provides
more accurate estimations of α for small values of N .
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Figure 4. Evolution of log(F (N)) as a function of log(N) for both the DFA
and the CDFA, in the case of a white noise.

Table I
COMPARISON OF THE MEAN AND VARIANCE VALUES OF α WITH EACH

APPROACH, ESTIMATED ON 500 WHITE NOISES FOR SMALL VALUES OF N .

Mean Variance % err.

DFA 0.592 3.29× 10−4 18.4
CDFA 0.507 5.16× 10−4 1.40

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, our purpose was to analyze the difference
between the DFA in which the global trend is constructed
from discontinuous local trends and its version when a priori
constraints are added to guarantee the continuity of the global
trend. To this end, we suggested analyzing both methods by
comparing the squares of their fluctuation functions using
a filtering-based interpretation. Both can be seen as ad hoc
wavelet based methods, but their main difference stands when
the length of the local trends are small. We currently prepare
a global comparative study including the DMA, the AFA and
the regularized DFA and analyzing a large set of processes.
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