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Abstract—Though whisper is a typical way of natural speech
communication, it is different from normal speech w.r.t. to
speech production and perception perspective. Recently, authors
have proposed Generative Adversarial Network (GAN)-based
architecture (namely, DiscoGAN) to discover such cross-domain
relationships for whisper-to-normal speech (WHSP2SPCH) con-
version. In this paper, we extend this study with detailed theory
and analysis. In addition, Cycle-consistent Adversarial Network
(CycleGAN) is also proposed for the cross-domain WHSP2SPCH
conversion. We observe that the proposed systems yield objective
results that are comparable to the baseline, and are superior in
terms of fundamental frequency (i.e., F0) prediction. Moreover,
we observe that the proposed cross-domain architectures have
been preferred 55.75% (on average) times more compared to
the traditional GAN in the subjective evaluations. This reveals
that the proposed method yields a more natural-sounding normal
speech converted from whispered speech.

Index Terms—Whisper, Normal Speech, Cross-domain, GAN,
DiscoGAN, CycleGAN.

I. INTRODUCTION

In recent decades, speech technologies have made remark-
able progress. However, many barriers still exist in whispered
speech applications [1]. Interesting applications of the whis-
pered speech communications are, private conversation in pub-
lic using cell phone, conversation in quiet environments like a
library, a hospital, a meeting room, etc. [1]. Furthermore, the
patients that are suffering from the vocal fold paralysis [2], [3],
vocal nodule [4], [5], etc. may not be able to produce normal
speech due to the partial or complete absence of vocal fold
vibrations (i.e., voicing). Losing the natural way of producing
the speech will affect one’s life extremely, since speech is
the most natural and powerful form of communication among
humans. Hence, the aim of the present work is to convert
whispered speech into normal speech using Machine Learning
(ML)-based approaches in order to improve the quality of
communication. Attempts have been made in the past to
predict fundamental frequency (i.e., F0) in the WHSP2SPCH
conversion [6]–[16]. Though F0 is absent in speech, it has been
observed that the sensation of pitch exists in the whispered
speech (which is encapsulated in an intricate way [6], [17]–
[19]). Hence, predicting F0 from the whispered speech is one
of the most challenging task.

Though whisper is a usual mode of speech communica-
tion, both whispered and normal speeches are different w.r.t
the speech production-perception perspective [1], [16], [20].
During the normal speech production, airflow from the lungs
is regulated by a periodic vibration of the vocal folds and

as a result, voiced sounds are produced. However, during
the whispered speech production, vocal folds do not vibrate
(i.e., the glottis is opened) which causes exhaled air to pass
through the glottal constrictions [1], [21]. This results in the
noisy source excitation for the vocal tract system [22]. Hence,
the efforts that are put on vocal folds are different for both
the types of speeches [1]. In addition, the noise excitation
in the whispered speech is normally distributed across the
lower portion of the vocal tract, which results in 20 dB
reduction of the power than its normal speech counterpart [23].
Furthermore, the whispered speech is completely aperiodic or
unvoiced in nature due to the lack of any periodic segments [1].
It has also been observed that a change in the overall spectral
slope, formant locations (i.e., a shifting of the boundaries of
vowel regions in the F1-F2 frequency space), and a change
in both energy and duration characteristics in the whispered
speech compared to its normal speech counterpart [1], [20],
[24]. These temporal and spectral differences significantly
reduce the intelligibility of the whispered speech [1], [25].
Hence, the conversion of whispered speech to normal speech
is formidable and exigent task [26].

Recently, GAN-based architectures have attracted signifi-
cant attention for various speech technology problems, such as
Speech Enhancement (SE), Voice Conversion (VC), etc. [16],
[27]–[31]. It is very natural for humans to acknowledge cross-
domain relationships so easily due to their efficient perception
mechanism. However, it is difficult for machines to achieve the
same ability [32]. The problem is to find a mapping between
two domains. The ability of GANs in modeling a latent
representation (due to its ability to learn probability density
function (pdf )) [33], has shown a significant improvement in
various Voice Conversion (VC) applications [27]–[31], [34].
As suggested in [16], [32], [35], CycleGAN and DiscoGAN
can learn cross-domain relationships without a pair-labeling
dataset. Here, we propose the CycleGAN and Mean Square
Error (MSE) regularized DiscoGAN (i.e., MMSE DiscoGAN)
architectures for the cross-domain WHSP2SPCH conversion
task with significant modifications in the loss functions. In par-
ticular, we measure the performance of both the architectures
using various parameters. To the best of the authors’ knowl-
edge, this is the first attempt of its kind to apply CycleGAN
and propose cross-domain architectures for the WHSP2SPCH
conversion task. Statistically meaningful analysis of objective
as well as subjective measures, is also presented.
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II. PROPOSED CROSS-DOMAIN ARCHITECTURES

A. DiscoGAN with MMSE regularizer

Our goal is to learn mapping function between two domains,
namely, whispered speech (W) and the normal speech (S). We
denote the data distribution as XW ∼ pW and XS ∼ pS ,
where XW is the features of the whispered speech, and XS

is the features of the normal speech. Our model includes two
mapping using generators GWS and GSW along with two
discriminators DW and DS (as shown in Fig. 1). GWS con-
verts XW into XWS (converted features of the normal speech)
such that XWS is indistinguishable from the true samples
XS , and similarly for GSW . Moreover, the discriminator DS

attempts to distinguish between XS and XWS . DW performs
an analogous operation for the XW .

Fig. 1: Proposed DiscoGAN architecture. Here, W: Whisper, and S:
Speech. After [16].

Our objective function contains regularized adversarial loss
(Eq. 1), and the two reconstruction losses (Eq. 2). Here, an
adversarial loss helps generator for matching the distribution in
the target domain, and the regularization of this loss with MSE
(as we can see in LG) helps in generating the samples that
are corresponding to the given whispered speech utterances.
Reconstruction losses help each generator to learn the mapping
from its input domain to the output domain and discover
relationships between them. These two objective functions are
explored to encourage the one-to-one mapping between two
domains. Since our task is to map the parameters of XW to
the parameters of XS , we rely on the regularized adversarial
objective function, which can be mathematically formulated
as:

LG =− EXS∼pS [log(DW (GSW (XS)))]

+
1

2
EXW∼pW ,XS∼pS [log(XW )− log(GSW (XS))]

2,

LD =− EXW∼pW [log(DW (XW ))]

− EXS∼pS [log(1−DW (GSW (XS)],
(1)

where EXS∼pS and EXW∼pW denotes the expectation over all
the samples XS and XW coming from the distribution pS and
pW , respectively. Here, GWS , GSW , DW , and DS must be
jointly trained [32], including the two reconstruction losses,
LW and LS . This can be mathematically represented as:

min
θ
LW = E[XWSW −XW ]2,

min
θ
LS = E[XSWS −XS ]

2.
(2)

These reconstruction losses (given by eq. (2)) satisfy our
requirement that GWS and GSW must be inverse of each
other to the extent possible, i.e., for any XW , XWSW =
GSW (GWS(XW )) must be close to the XW , and similarly
for any XS . Ideally, the equality of XWSW and XW (i.e.,
XWSW = XW ) should hold. However, this is difficult to
optimize [32]. For this reason, the distance between LW and
LS is minimized by using the MSE loss [32], [36]. Hence, the
total generator loss for GWS can be defined as:

LGWS
= LW + LGS

, (3)

where LGS
can be defined in the form of eq. (1). The generator

loss GSW can also be defined in the similar way. Hence, total
generator loss is LGWS

+ LGSW
and total discriminator loss

is LDW
+LDS

, where LDW
and LDS

can also be defined in
the form of eq. (1).

B. CycleGAN

Our model consists of two generators (i.e., GWS and GSW )
and two discriminators (i.e., DW and DS) as illustrated in
Fig. 2. Generator GWS serves as a mapping function from
XW to XS , and similarly for GSW . The discriminators aims
to distinguish between the real and generated distribution. For
instance, DW distinguish between XS and XWS , and DS

between XW and XSW .

Fig. 2: Proposed CycleGAN architecture. Here, W: Whisper, and S:
Speech. After [35].

We apply two types of loss functions defined as adversarial
loss and cycle-consistent loss. In adversarial loss, we replace
negative log-likelihood objective function by a least-squares
loss for a better stability during training [35], [37]. The
objective function for the adversarial loss for mapping GWS ,
and corresponding discriminator DS can be formulated as
[35]:

LGWS
= EXS∼pS [(log(DS(XS)− 1)2]

+ EXW∼pW [log(DS(XWS)− 1)2].
(4)

Similarly, we can define objective function for GSW . Here,
cycle-consistent loss ensure that an input XW or XS retain its
original form after passing through two generators. The cycle-
consistent loss function is analogous to the objective function
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of autoencoder, which minimizes the difference between the
input and output to reconstruct the input from the output. We
use metric function of the L1 norm, and is defined as,

Lcyc = EXW∼PW
[‖GSW (GWS(XW ))−XW ‖1]

+ EXS∼PS
[‖GWS(GSW (XS))−XS‖1].

(5)

These two losses incentivize the one-to-one mapping between
two domains. The full objective function combines adversarial
loss and cycle-consistent loss written as:

Ltotal = LGWS
+ LGSW

+ λLcyc. (6)
where λ is hyper-parameter which controls the relative impor-
tance of cycle-consistent loss w.r.t. other losses. We have used
λ = 10 during the experiments.

C. DiscoGAN vs. CycleGAN
Though the training method of both the architectures is the

same, these architectures differ in terms of their loss functions.
In CycleGAN, a least mean square loss (i.e., MSE) plays a
role of adversarial loss, instead we have binary cross-entropy
loss (BCE) as the adversarial loss in DiscoGAN. Moreover,
the DiscoGAN has two different reconstruction losses which
are regularized by MSE loss. However, CycleGAN has an
only cycle-consistency loss which is regularized by the metric
function of L1 norm. The significance of the differences in
loss functions in the context of WHSP2SPCH conversion is
presented in the next section.

III. EXPERIMENTAL RESULTS

A. Experimental Setup
In this paper, we have used the whispered TIMIT (wTIMIT)

database [38]. In particular, we took one male and one female
speaker’s data for the development of WHSP2SPCH conver-
sion systems. In total, 388 parallel utterances corresponding to
the whispered and the normal speeches are taken for training
and 35 utterances for testing. Each architecture is used to learn
1) mapping between the cepstral features corresponding to the
whispered and the normal speech, and 2) the mapping between
the converted cepstral features and the corresponding F0 of the
normal speech, which is followed by post-processing using a
sinc interpolation smoothing in the voiced region.

In this paper, generators in GAN, DiscoGAN, and Cycle-
GAN follow the identical architecture with the three hidden
layers. Having a uniform architecture helps in analyzing the
advantages of adversarial training equitably. Each hidden layer
contains 512 neurons with Rectified Linear Unit (ReLU)
activation, whereas the output layer has the linear activation
function. The discriminators of the GAN, DiscoGAN, and
CycleGAN also have three hidden layers, with ReLU activa-
tion function, whereas the output layer has sigmoid activation
function. All the three models are trained for 80 epochs, using
an effective batch size of 1000 frames as suggested in [39].
The parameters are optimized using Adam optimization, with
a learning rate of 0.0001 [40]. The 40-dimensional (dim) Mel
Cepstral Coefficients (MCCs) (including the 0th coefficient)
are extracted from the whispered and normal speeches with
25 ms window and 5 ms frameshift. For analysis-synthesis,
we have used AHOCODER [41].

B. Objective Evaluation

We have applied Mel Cepstral Distortion (MCD) and
Root Mean Square Error (RMSE) of log(F0)-based objective
measures to analyze the effectiveness of the WHSP2SPCH
conversion systems. The traditional MCD measure is used here
which is given by [42]:

MCD [in dB] =
10

ln10

√√√√2
40∑
i=1

(mt
i −mc

i )
2 , (7)

where mt
i and mc

i are the ith MCCs of the reference, and
converted signal. In particular, mt

i and mc
i are the ith MCCs of

the reference neutral speech and the converted neutral speech
in the case of WHSP2SPCH conversion system. Since MCD is
the distance between the converted and the reference cepstral
features, a system that is having lesser MCD is considered as
a better system.
TABLE I: MCD analysis of the different systems. Here, % in the
bracket indicates relative reduction in the MCD w.r.t the baseline

GAN Architectures Male Speaker Female Speaker
Baseline: GAN 7.04 8.12

CycleGAN 6.39
(9.23%)

6.72
(17.21%)

DiscoGAN 6.6
(6.25%)

6.63
(18.35%)

TABLE II: RMSE-based objective analysis of log(F0). Here, % in
the bracket indicates relative reduction in the RMSE w.r.t the baseline

GAN Architectures Male Speaker Female Speaker
Baseline: GAN 5.23 4.56

CycleGAN 4.08
(21.99%)

5.88
(-28.94%)

DiscoGAN 2.54
(51.43%)

4.52
(0.9%)

To measure the RMSE of log(F0), the actual reference
speech and the converted speech signals, are time-aligned
using the Dynamic Time Warpping (DTW) algorithm. These
DTW aligned pairs will generate voiced-voiced, voiced-
unvoiced, unvoiced-voiced and unvoiced-unvoiced pairs. Here,
we consider only voiced-voiced pairs for computing the RMSE
of the log(F0) (since F0 is undefined for the unvoiced frames
primarily due to absence of voicing) [43]. RMSE of the
log(F0) is given by:

RMSE(log(F0)) =

√√√√ k∑
i=1

[log(F t0i)− log(F c0i)]
2, (8)

where k is the total number of voiced-voiced pairs after the
alignment, and F0

t and F0
c are the F0 of the reference and

the converted speech signals, respectively. Lesser the RMSE
of log(F0), better the system is.

The effectiveness of the CycleGAN and DiscoGAN can
be clearly seen for the WHSP2SPCH conversion system in
objective results. As shown in Table I and Table II, we can
see the relative % reduction in MCD and RMSE of log(F0) for
the male and female speakers over the baseline, respectively.
The noteworthy performance of both the proposed architec-
tures is due to their ability to encapsulate the cross-domain
relationships efficiently compared to GAN [32], [35], [44]. We
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also compare the results of CycleGAN and DiscoGAN, where
the MCD results of both the architectures are comparable.
However, the DiscoGAN outperforms the CycleGAN in terms
of RMSE of the log(F0), and gets an overall 37.75% and
23.13% reduction in RMSE of the log(F0) of male and female
speakers, respectively. An example of the generated F0 contour
using the various developed systems are shown in Fig. 3. We
used the same DNN-based architectures for the voice-unvoiced
decision, which can be seen in the Fig. 3.

Fig. 3: log(F0) predicted using the (a) GAN, (b) CycleGAN, (c)
DiscoGAN, and (d) corresponding natural speech signal for Panel I:
female, and Panel II: male speakers.

Fig. 4: Histogram of generated log(F0) using different techniques
for (a) male, and (b) female speaker along with the histogram of
log(F0) of natural speech signal.

The distribution of the predicted log(F0) is presented in Fig.
4 for evaluating the performance of the WHSP2SPCH conver-
sion systems. It is very clear from Fig. 4 that the distribution of
the generated F0, using the proposed DiscoGAN architecture,
closely follows the distribution of the F0 corresponding to the
natural speech. This finding is in line with key objective of
GAN architectures [33].

C. Subjective Evaluation

Comparative subjective analysis test, namely, ABX has been
taken for the subjective evaluations. Total 41 subjects (21
females and 20 males between 18 to 30 years of age and with
no known hearing impairments) took part in the subjective test.
Here, we randomly played same utterances from two different
systems and asked subjects to decide which one is more better
in terms of naturalness. Results of the ABX tests obtained from
the total 504 samples are shown in Fig. 5. We can clearly see
that the proposed DiscoGAN and CycleGAN are 24.39% and

87.1% times more preferred over the GAN by the subjects.
Furthermore, we observed that the CycleGAN is 53.7% times
more preferred than the DiscoGAN.

Fig. 5: ABX test analysis for the various developed systems.

Interestingly, we found that DiscoGAN performs better in
objective results, and CycleGAN performs better in subjective
results. The key reasons for this recline in their differences lies
in loss functions. We know that MCD and RMSE of log(F0)
are Euclidean distances and encapsulate the characteristics
of MSE loss, as shown in eq. (7) and eq. (8). The goal of
our proposed architectures is to update weights and biases
via MSE loss. This training method using MSE loss as
reconstruction loss in DiscoGAN helps to reduce the difference
between the real and the generated data distributions, which
leads to desirable results in our objective functions. The effect
of outliers is exponential in L2 norm (here, MSE loss) [45].
As discussed in [46], [47], outliers degrade the speech quality
in terms of intelligibility and naturalness. However, L1 norm
is less susceptible to the outliers [45], which leads to better
subjective results using CycleGAN since we are using L1

norm as cycle consistency loss. Another possible reason is
that L2 norm has the unique possible shortest path/solution in
Euclidean space which helps to minimize MSE loss efficiently
[45], yields better objective results. On contradictory, L1 norm
has multiple path/solutions due to absolute value (i.e., mode
operation [45]), which helps to capture different style of
speaking by different speakers more efficiently and hence,
yielding better results in the subjective evaluation.

IV. SUMMARY AND CONCLUSIONS

In this paper, cross-domain CycleGAN and DiscoGAN
architectures have been proposed for finding the cross-domain
relationships between the whisper and normal speeches. The
proposed cross-domain architectures perform better compared
to the baseline GAN in both the objective as well as the
subjective evaluations. Furthermore, it has been observed that
the DiscoGAN performs better in objective results, whereas
the CycleGAN performs better in the subjective results. This
is primarily due to the differences in the loss functions of both
the architectures. In addition, we found that the distributions
of the generated F0 obtained using the proposed architectures
closely follow the distribution of the F0 corresponding to
the natural speech signal. However, there is still the room
for improvement in the quality of the converted voices. In
the future, we plan to explore high-quality vocoder, namely,
WaveNet for further improvement in voice quality.
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