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Abstract—In this work, we propose a novel measure of distance
for quantifying dissimilarities between signals observed on a
graph. Building on a recently introduced optimal mass transport
framework, the distance measure is formed using the second-
order statistics of the graph signals, allowing for comparison of
graph processes without direct access to the signals themselves,
while explicitly taking the dynamics of the underlying graph
into account. The behavior of the proposed distance notion is
illustrated in a graph signal classification scenario, indicating
attractive modeling properties, as compared to the standard
Euclidean metric.

Index Terms—Graph Signal Processing, Optimal mass trans-
port, Graph signal similarity

I. INTRODUCTION

In recent years, graph signal processing has attracted much
interest in the signal processing community due to the topic’s
diverse area of application, ranging from the processing of
brain signals, transportation networks, social media, and sensor
networks (see, e.g., [1]–[4]). Generally, one is interested in
processing signals that are defined on an underlying graph or
network, where often the signal resides on the vertices of the
graph, with the edges modeling the dependencies between the
different signal values [2]. Extending the signal processing
framework to graph signals enables signal modeling not only
of inter-temporal dependencies for the individual node signals
but also includes the modeling of the joint dependencies
between the node signals, enabling the modeling of complex
dynamic networks [5]. As in conventional signal processing,
identification and estimation problems are often at the heart of
ones interest, and to address such problems, a notion of signal
similarity and distance for graph signals has to be introduced.
This has led to the development of several different similarity
measures, with notable examples including graph kernel based
approaches [6], the Earth mover’s distance for comparing
images [7], and the conventional Euclidean distance. Of these,
the graph kernel approach builds on identifying and comparing
the underlying graph structure, and is thus not concerned with
the graph signals directly [6]. Which similarity formulation
that is most suitable to employ typically depends on the
application at hand, but to fully utilize the information supplied
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by the graph formulation, it is desirable to use a measure that
reflects the underlying graph topology. In some applications,
it is not feasible to compute measures of similarity defined
for observations of the signal directly, e.g., due to restrictions
on the storage or transmission capacity of the system, or
due to a sensitive nature of the measured data. Earlier Earth
mover’s distance measures, such as the one introduced in
[7], compares the actual graph signals, necessitating access
to these. An alternative is then to instead employ covariance
estimation techniques, already commonly used in applications
such as spectral estimation, radar, sonar and medical imaging
[8]. Then, instead of storing the entire graph signal, only the
signal covariance matrix needs to be stored or transmitted.
In order to comply with such restrictions, we in this work
propose a graph signal distance notion relying only on the
availability of the second-order statistics of the signals, as
well as knowledge of the underlying graph. In [9], a problem
reminiscent of this, specifically, covariance interpolation, was
explored and a framework for defining distances between
covariance matrices in terms of their spectral representations
was presented. As illustrated in [9], the commonly used
Euclidean metric does not, in general, respect the underlying
topology for spectral distances, and typically imply fade-in
fade-out effects not desirable from a modeling perspective. As
an alternative, distances induced by optimal mass transport
(OMT), in some specific settings known as Earth mover’s
distance (see, e.g., [10] for an introduction and overview of
the field), was considered in [9], and showed to exhibit several
desirable modeling properties. Earth mover’s distance has also
recently been considered in the context of graph signals in
[11], where it was shown to accurately model heat diffusion
on various graphs. Extending upon the work in [9], this work
proposes a notion of distances for graph signals such that
the underlying topology of the graph, and the graph signal
dynamics, are fully taken into account. In contrast to the
distances introduced in [6], [7], the presented measure operates
only on the second-order representation of the data, thereby
allowing for a formulation that does not require access to
the actual measurements. To illustrate the performance of the
proposed measure, as compared to the conventional Euclidean
distance, we examine the problem of classifying a measured
spectrum using a set of mismatched spectra.
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II. SIGNAL MODEL

Consider a graph consisting of N nodes, and let xt ∈ CN
denote the signal over the graph at time t. Reminiscent of [12],
[13], we will herein assume that the dynamics of xt may be
well modeled using the system

xt = Axt−1 + But (1)

where A ∈ CN×N , B ∈ CN×P , and with

ut =
[
u
(1)
t . . . u

(P )
t

]T
∈ CP

denoting an external input affecting the graph signal. Using
such a model, the matrix A encodes the internal structure
of the graph, i.e., the matrix details the signal’s evolution
when not affected by an external input. In applications, A
may be inferred from, e.g., the sensor network topology or
the coupling structure. The external input signal may be used
to model, e.g., electromagnetic, acoustic, or seismic waves
impinging on a sensor network, with B reflecting, e.g., the
considered source locations. To simplify the exposition below,
let the column structure of B be formed as

B =
[

b1 b2 . . . bP
]
.

In this work, we will consider input signals ut where each
component u(k)t may be well modelled as a wide-sense sta-
tionary (WSS) stochastic process, i.e., the covariance function
rk(τ), defined as E(u

(k)
t u

(k)
t−τ ), where E(·) and u denote the

statistical expectation and the complex conjugate, respectively,
is assumed to only depend on the lag τ and not the actual time
t. As noted, some applications prohibit a direct processing of
the measured signal xt, sampled at times t = 1, 2, . . . , T ,
directly, due to, e.g., security or computational considerations.
In order to allow for measuring distances between such graph
signals, for instance in order to classify an observed signal
in such applications, we will here only exploit second-order
moments, i.e., the covariance matrix of the signal xt, in form-
ing the distance measure. Similar to [9], the signals’ spectral
representations are here used to define the distance between
the covariance matrices corresponding to the processes on the
graph. Specifically, these spectral representations are directly
related to the exogenous input signals, as detailed in the
following proposition1 (see also [14], [15]).

Proposition 1. Let the matrix A be stable, and let the
components of the input signal ut be mutually indepen-
dent WSS stochastic processes with power spectral densities
Φ1, . . . ,ΦP ∈ M+(T), with M+(T) denoting non-negative
measures on T, and T = (−π, π]. Then, the graph signal xt
is a WSS process, and the covariance matrix R , E

(
xtx

H
t

)
is the unique matrix satisfying

R−ARAH =
P∑
k=1

Γk (Φk) (2)

1The proofs for the propositions are given in the appendix.

where (·)H denotes conjugate transpose, and
Γk :M→ CN×N is detailed as

Γk(Φ) =

∫ π

−π
Φ(θ)

∞∑
τ=0

e−iθτAτbkb
H
k

dθ

2π

+

∫ π

−π
Φ(θ)bkb

H
k

∞∑
τ=0

eiθτ (Aτ )H
dθ

2π

− bkb
H
k

∫ π

−π
Φ(θ)

dθ

2π
,

(3)

and where bk, for k = 1, . . . , P , are the columns of B.

Proposition 1 provides a direct link between the power
spectra of the input signals and the graph signal covariance
matrix, thereby allowing for analysis of the behavior of the
graph signal, as detailed by its second-order statistics, in
terms of the structure of the driving exogenous process.
Here, we say that a set {Φk | k = 1, . . . , P} of power spectra
corresponding to the input signal ut are consistent with an
observed covariance matrix R if equation (2) holds. It may be
noted that the application of the operators Γk in (3) involve
computing a power series in the matrix A. This may at first
glance pose a problem, unless A is nil-potent. However, under
the quite general assumption of diagonalizability, the following
result may be utilized.

Proposition 2. In addition to the assumptions of Proposi-
tion 1, let A be diagonalizable according to A = SΛS−1,
where Λ = diag (λ1, . . . , λN ). Then, the operators Γk may
be expressed as

Γk(Φ) =

(∫ π

−π
Φ(θ)Ψ(θ)

dθ

2π

)
bkb

H
k +

+ bkb
H
k

(∫ π

−π
Φ(θ)Ψ(θ)

dθ

2π

)H
− bkb

H
k

∫ π

−π
Φ(θ)

dθ

2π
,

(4)

for k = 1, . . . , P , where the matrix valued function
Ψ : T→ CN×N is detailed as

Ψ(θ) = S diag

(
1

1− e−iθλ1
, . . . ,

1

1− e−iθλN

)
S−1.

It should be noted that the representation of Γk in (4) more
easily lends itself to a practical implementation.

III. DISTANCES BETWEEN GRAPH PROCESSES

Consider a scenario in which two processes, {xt}t and
{x̃t}t, belonging to the same graph description (A,B), are
observed. Let the corresponding, potentially different, covari-
ance matrices be denoted R and R̃, respectively. Based on
this pair of observed covariance matrices, we want to have a
measure of distance between R and R̃ in order to quantify
dissimilarities between the processes {xt}t and {x̃t}t. A
potential candidate distance is the Euclidean metric on CN×N ,
i.e., the standard Frobenius norm. However, this distance does
not take the underlying graph structure into account, nor
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does it provide a direct link to the underlying generative
mechanism of the process, i.e., the influence of the input
signal. In order to take the graph structure into account and
allow for the influence of the input, we herein propose to
utilize the framework recently proposed in [9] for defining
distances between covariance matrices by relating these to
an underlying spectral domain. These ideas have recently
also been used in the context of robust direction-of-arrival
estimation localization [16], [17]. The work-horse of these
methods is the Monge-Kantorovich problem of optimal mass
transport (see, e.g., [10]). This problem is concerned with
finding the optimal coupling between two mass distributions
[10], and has recently been used to induce metric structure
on the space of power spectra [18], convex clustering [19],
regularizing inverse problems [20], and modeling and control
of stochastic systems [21]. The modeling potential of OMT
has also gathered increasing attention in a plethora of signal
processing and machine learning applications (see, e.g., [22]
and the references therein).

Building on the framework introduced in [9], we here
propose to define the distance between R and R̃, and thereby
{xt}t and {x̃t}t, by considering the transport distances be-
tween the power spectra of the components of the input signal
ut. Specifically, letting c : T2 → R+, where T2 = T× T, be
a cost function, we define the distance between R and R̃ as
the minimum objective value of

minimize
Mk∈M+(T2)

P∑
k=1

∫
T2

Mk(θ, ϕ)c(θ, ϕ)dθdϕ

subject to R−ARAH =
P∑
k=1

Γk

(∫
T
Mk(·, ϕ)dϕ

)
,

R̃−AR̃AH =
P∑
k=1

Γk

(∫
T
Mk(θ, ·)dθ

)
.

(5)

Here, Mk denotes the transport plan (see, e.g., [10])
between two spectra corresponding to the input sig-
nal component u(k). That is, the margins of Mk, i.e.,∫
TMk(·, ϕ)dϕ and

∫
TMk(θ, ·)dθ are power spectra of

u(k). The two constraint equations ensure that these mar-
gins are consistent with the observed covariance matri-
ces R and R̃, i.e.,

{∫
TMk(·, ϕ)dϕ | k = 1, . . . , P

}
and{∫

TMk(θ, ·)dθ | k = 1, . . . , P
}

are sets of spectra consistent
with R and R̃, respectively. Thus, the minimum objective
value corresponds to the most cost efficient way of morphing
power spectra of the input signal components, such that these
spectra are consistent with the measurements. By definition,
the distance measure defined via the problem in (5) directly
takes the graph structure and underlying dynamic into account.
That is, perturbations of the spectra of the input signal are
explicitly modeled, allowing for interpretability of the obtained
distance (see also [9] and [18] for a discussion of the modeling
properties). It may be noted that the problem in (5) is convex,
and a direct discretization of the problem yields a linear
program that may be directly implemented using off-the-shelf
solvers. In the numerical examples of this work, we use
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Fig. 1. Spectra of the two template signals.

CVX [23] to form the implementations. However, it should
be noted that computationally efficient solution algorithms
may be constructed along the lines in [24]. For the choice
of the cost function c, this may be chosen as to reflect
modeling considerations. Throughout the numerical section,
we will use the squared distance on the unit torus, i.e.,
c(θ, ϕ) =

∣∣eiθ − eiϕ∣∣2.

IV. NUMERICAL EXAMPLES

To illustrate the use of the proposed framework, we consider
the classification of a signal that is somewhat mismatched
to its assumed template, a situation commonly occurring in
various applications. Such a situation would, for example,
occur in several forms of spectroscopy, where the signal
frequencies will depend on the temperature of the observed
sample, implying that even minor deviations in temperature
between the reference measurement and the sample of interest
will result in an undesired spectral mismatch (see, e.g., [25]).
Another common situation would be when the template spectra
have been formed under ideal conditions, for example in a
laboratory, whereas the measurement of interest is made in a
less ideal situation, possibly using cheaper sensors. To mimic
such a situation, we here consider two template graph signals,
and a test signal that is to be matched. The template signals
are illustrated in Figure 1. Here, both the templates and the
measured signals are generated using (1), with each template
being formed using a randomly generated symmetric and
stable A matrix, and a randomly generated B. The input signals
for the first and second templates were generated as AR(2)-
processes, with complex conjugated poles at 0.9395e1.5i and
0.7002e0.7984i, respectively. For the measured signal, which
is a mismatched version of the second template, the input
was instead generated using an AR(2)-process 0.7002eθi,
where the angle, θ, varies along a 100 point grid on (0, π].
Figure 2 illustrates how the distance measures change for
different frequencies between the measured signal and the
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two template signals using both the OMT framework and the
Euclidean distance. In the figure, it may be seen that when the
frequency of the measured signal aligns with the frequency
with one of the templates the distance is minimal using both
the Euclidean distance and the OMT framework. However,
what is interesting to note is that the OMT distance is, as one
may expect, small in the region around the true frequency of
the template signal, whereas the Euclidean distance makes a
sharp dip at just the correct frequency, only to quickly increase
again for small frequency offsets. This behavior indicates that
the Euclidean distance is not a good similarity measure, as it
will be very sensitive to small perturbations, whereas the OMT
on the other hand is more robust. As this example illustrates,
the OMT measure is able to better represent the distance
between the graph signals than the Euclidean measure allows.
In these simulations, we have implemented both the proposed
OMT distance, given in (5), and the Euclidean distance using
CVX [23].

V. CONCLUSION

In this paper, we have utilized the framework of optimal
mass transport in order to formulate a measure of distance, or
dissimilarity, between signals defined on a graph. Relying only
on the availability of the second-order moments of the signal,
the proposed distance is applicable also to scenarios in which
storing or transmission of the original graph signal is not fea-
sible. Specifically, the proposed distance is defined in terms of
the power spectral densities of external input signals affecting
the signal observed on the graph. The considered numerical
examples indicate promising robustness and interpretability of
the proposed distance, as compared to the Euclidean metric.

APPENDIX

A. Proof of Proposition 1

As the system is linear and time-invariant and A is stable,
it holds that {xt}t is a WSS process. Then,

R = E
[
(Axt−1 + But) (Axt−1 + But)

H
]

= ARAH + AE
[
xt−1u

H
t

]
BH

+
(
AE

[
xt−1u

H
t

]
BH
)H

+ BE
[
utu

H
t

]
BH .

Expanding the second term yields

AE
[
xt−1u

H
t

]
BH =

∞∑
τ=1

AτBE
[
ut−τu

H
t

]
BH

=
∞∑
τ=1

AτBRu(τ)BH

=
∞∑
τ=1

Aτ

(
P∑
k=1

rk(τ)bkb
H
k

)

=
P∑
k=1

( ∞∑
τ=1

rk(τ)Aτ

)
bkb

H
k ,
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Fig. 2. OMT distance as well as Euclidean distance between the measured
signal and the template spectra for different frequencies of the measured
signal. The poles of the templates are marked by horizontal lines. with the
green line and purple line corresponding to the poles of templates 1 and 2,
respectively.

where we have used the assumption of independence between
the components of the input signal, i.e.,

Ru(τ) , E
(
utu

H
t−τ
)

= diag
(
r1(τ) . . . rP (τ)

)
.

As A is assumed stable, the involved series are convergent.
Finally, as each component u(k)t is WSS, there exists non-
negative measures, i.e., power spectra, Φk, such that (see, e.g.,
[26])

rk(τ) =

∫ π

−π
e−iθτΦk(θ)

dθ

2π
,

allowing us to write
∞∑
τ=1

rk(τ)Aτ =
∞∑
τ=1

∫ π

−π
Φk(θ)e−iθτ

dθ

2π
Aτ

=

∫ π

−π
Φk(θ)

∞∑
τ=1

e−iθτAτ dθ

2π
.

The uniqueness of R follows directly from the stability of A,
concluding the proof. �

B. Proof of Proposition 2

By assumption, |λn| < 1 for n = 1, . . . , N . Then,
∞∑
τ=0

e−iθτAτ = S
∞∑
τ=0

e−iθτΛτS−1

= S
∞∑
τ=0

diag
(
e−iθτλτ1 , . . . , e

−iθτλτN
)
S−1

= S diag

( ∞∑
τ=0

e−iθτλτ1 , . . . ,
∞∑
τ=0

e−iθτλτN

)
S−1

= S diag
(

1

1− e−iθλ1
, . . . ,

1

1− e−iθλN

)
S−1.

The statement of the proposition then follows directly. �
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