
Real-Time Prototyping of Matlab-Java Code
Integration for Water Sensor Networks Applications

S. Roubakis
Institute of Computer Science

FORTH
Heraklion, Greece
roub@ics.forth.gr

G. Tzagkarakis
Institute of Computer Science

FORTH
Heraklion, Greece
gtzag@ics.forth.gr

P. Tsakalides
Institute of Computer Science

FORTH
Computer Science Department

University of Crete
Heraklion, Greece

tsakalid@ics.forth.gr

Abstract—Industrial applications typically necessitate the in-
teraction of heterogeneous software components, which makes
the design of an integrated system a demanding task. Specifically,
although Matlab® and Java are among the most commonly used
programming languages in industrial practice, with each one
offering its own advantages, however, their integration for real-
time code prototyping is not straightforward. Motivated by this
problem, this work proposes an efficient method based on the
use of sockets to integrate Matlab and Java code for designing
a data processing platform tailored to smart water sensor
networks scenarios. The performance of the proposed approach
is evaluated on two distinct tasks, namely, the recovery of missing
values and the temporal super-resolution from streaming data.
Experimental evaluation with real pressure data reveals the
superiority of our methodology, in terms of reduced execution
times, when compared against two well-established alternatives,
namely, the use of standalone applications using input-output
files for executing Matlab code in Java-based environments
and socket-based solutions implemented directly in a Matlab
environment.

Index Terms—Matlab-Java code integration, client-server
model, real-time prototyping, water sensor networks

I. INTRODUCTION

One of the most demanding tasks in industrial practice is
the integration of heterogeneous software components for the
design of data processing platforms based on real-time code
prototyping. The SmartWater2020 project1 is a characteristic
example of an R&D project, tailored to an industrial applica-
tion, necessitating the close synergy between the involved part-
ners, who develop the individual software modules in different
programming languages. More specifically, SmartWater2020
aims at modernizing four water supply organizations in Cyprus
and Crete through the development of intelligent software
and smart water network monitoring devices for detecting
leakages and problems in the quality of water, as well as the
implementation of an innovative system for controlling the
network pressure in real time.

This work is funded by the Interreg V-A Greece-Cyprus 2014-2020 pro-
gramme, co-financed by the European Union (ERDF) and National Funds of
Greece and Cyprus, under the project SmartWater2020.

1SmartWater2020, Interreg V-A Greece-Cyprus 2014-2020 programme,
https://www.smartwater2020.eu

In particular, the individual components of the platform are
developed in Matlab® and Java. Although they are among
the most commonly used programming languages in industrial
practice, with each one offering its own advantages, however,
their integration for real-time code prototyping is not straight-
forward. The typical approach to combine the two languages
is based on the generation of standalone applications.

Despite the importance of Matlab-Java code integration
for real-time prototyping, only a few studies are publicly
available, providing basic information about how to combine
these two programming languages efficiently in practical ap-
plications [1]–[5]. Motivated by the above limitations, this
work proposes an efficient alternative method for integrating
Matlab and Java codes, based on the use of a client-server
model [6], [7]. This approach enables an efficient distributed
communication framework between two or more independent
participants, who support two-way communication.

The performance of our proposed approach is evaluated on
two distinct problems, that are also among the key functional-
ities supported by our developed data processing platform: (i)
recovery of missing values in streaming data, and (ii) artificial
increase of the temporal resolution for a received data stream.
More specifically, the use of wireless sensor networks poses
issues and challenges to the system’s design and topology. Any
malfunction of the equipment, or the presence of errors during
transmission often yield missing measurements, that should be
recovered prior to performing a high-level data analysis and/or
statistical inference. Furthermore, the sampling frequency (or,
equivalently, temporal resolution), which is associated with
the telemetry costs, is often different from the frequency
that is necessary to process the data with high accuracy,
thus enhancing the reliability of the system. To this end, we
increase artificially the temporal resolution of a given data
stream, by reducing the problem of temporal super-resolution
into a problem of missing data recovery, where the missing
entries are introduced in a structured way in the received data
stream. Both functionalities are important for water resource
management applications, where leak detection is a critical
task, and the reaction time is a crucial issue to guarantee the
system’s robustness.

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

In summary, the contribution of this paper is twofold: (i)
we describe in detail an efficient cost-free way to integrate
Matlab and Java for real-time applications by exploiting the
technology of sockets, and we provide a comparison with the
well-established counterparts, revealing the high performance
of our proposed method; (ii) we evaluate the performance of
the proposed code integration method in two distinct problems
arising in a real industrial use case, namely, the recovery
of missing data and the temporal super-resolution from real
pressure data recorded by a smart water network.

The rest of the paper is organized as follows: Section II
overviews the typical approach for integrating Matlab and
Java codes. Our proposed socket-based integration method
is analyzed in Section III, and its performance is evaluated
and compared against its competitors in Section IV. Finally,
Section VI summarizes the main outcomes of this work and
gives directions for further extensions.

II. CONVENTIONAL MATLAB-JAVA INTEGRATION
APPROACH

This section overviews the typical approach for integrating
Matlab and Java codes, which is primarily based on the
concept of generating standalone applications combined with
input-output file operations.

A. Matlab Standalone Applications

The distribution of a Matlab system is often hampered
by the dependencies it creates. As such, the installation and
license payment of a, more or less, common version of Matlab
was initially required, so as to be able to exchange and
integrate the modular software components of a system written
by several partners. The Matlab compiler (MC) was introduced
to overcome this limitation by producing Matlab standalone
applications (MSA) that do not rely on such dependencies.
These applications include all the necessary pre-written and
built-in functions, with the MC producing an installer that
installs both the application and all the required dependencies
on a target system. Functions can be called with their usual
parameters, but they need to be converted to the desired type
before using them internally. The main advantage of an MSA-
based design is that it can be used by systems where there is
no pre-installed version of Matlab or related licenses.

B. Java Standalone Applications

Similarly to Matlab, Java allows the generation of Java
standalone applications (JSA). Specifically, any Java class
including a main method can produce a specific .jar file that
can be executed independently on a target machine. The only
requirement for execution is the existence of a compatible
version of Java Runtime Environment (JRE). These systems
can accept parameters, output the results on the JVM console,
as well as generate graphical interfaces that enable the user to
interact with the system. The main limitation of a Java-based
environment is the lack of advanced mathematical libraries for
facilitating complex scientific calculations. This drawback can
be eliminated either by writing from scratch a Java version

of our numerical algorithms or by integrating Java with a
programming language which is better suited for scientific
calculations, as is the case of Matlab.

C. Matlab-Java Integration

As mentioned above, there is often a need for intercon-
necting systems or parts of them that have been developed in
different programming environments. Focusing on Matlab and
Java integration, this can be accomplished in several ways.
Matlab provides built-in support for loading Java classes,
accessing fields, and invoking functions. Correspondingly, a
Java-based system can invoke Matlab methods synchronously
or asynchronously through the provided application program-
ming interface (API). However, the response of such an
architecture is typically prohibitive for designing systems that
rely on streaming data. An alternative way is to use an MSA
that integrates the functionality we want to exploit. However,
the use of such an application requires the creation of a new
process for execution.

Simply embedding the different parts that have been de-
veloped in the two programming environments does not meet
the needs of a streaming application. At the same time, more
efficient integration methods, such as the use of Matlab builder
JA [4], are paid solutions. Thus, for the specific application,
it is convenient to separate the two implementations into
independent applications and focus on the communication
between them. This architecture enhances the agility of the
participants as the independent Matlab application will be the
common center of advanced mathematical calculations, while
each participant will be able to design its own data collection
and visualization system customized to its own needs.

These two independent entities of the information producer
and processing system can run locally on a machine. The
usual way of communication is through input/output (I/O)
operations on files. The data and parameter values are written
by one entity in the appropriate form and used by the other.
After each operation, it is necessary to consider deleting the
files involved. Fig. 1 shows the steps for the temporal super-
resolution functionality, which is applied on one-dimensional
time series written in a single file. This file is the input
to the standalone application for the associated functionality.
The resulting output is written in an output file which, when
used, is deleted along with the input file. On the contrary,
the recovery of missing values from tensor-structured data
is performed on three-dimensional arrays involving multiple
time series. Fig. 2 shows the corresponding execution pipeline,
which requires writing in multiple files for calling the function,
as well as the production of multiple output files. Both the
input and ouput files are deleted after the operations are
completed.

III. PROPOSED SOCKET-BASED MATLAB-JAVA
INTEGRATION METHOD

The restrictions of I/O communication between standalone
applications can be overcome by using a different archi-
tecture. Concerning the two targeted applications, namely,

2019 27th European Signal Processing Conference (EUSIPCO)

Fig. 1: I/O file-based Matlab-Java code interaction for tem-
poral super-resolution.

Fig. 2: I/O file-based Matlab-Java code interaction for recov-
ering missing values from tensor-structured data.

tensor completion and temporal super-resolution, they can be
implemented in both Java and Matlab environments. However,
for precise and complex calculations, it is preferable to use the
Matlab implementations of the algorithms, which avoids their
re-writing in Java. As existing systems of participants consist
of Java-based components, it is more efficient to implement
and incorporate a component, which will be responsible for
calling the Matlab functions to be employed.

Specifically, our approach is based on the client-server
model. In this model, there are two entities for the purpose
of allocating a resource or providing a service upon a request.
The entity that makes the requests is called the client, while
the one that provides a service is called the server. The server
waits until a request arrives to serve it. As long as the result
of the request is calculated, the client is blocked. Then, the
server responds to the request of the client, which unblocks and
receives the result. Clients and servers are often deployed on
separate hardware and communicate via a computer network.
However, they can also be implemented in the same system.

In our application, the server entity is assigned to a Matlab
implementation of the functions, whilst the client entity and
the rest of the system are implemented in Java. The client-
server models must define their communication protocol, that
is, the set of rules governing the exchanged messages. The
two entities run on the same system and their communication
is performed through Transmission Control Protocol (TCP)
sockets. TCP sockets were selected against the User Datagram
Protocol (UDP) due to the guarantees they provide in send-

Fig. 3: Proposed socket-based Matlab-Java code interaction
for (i) recovering missing values from tensor-structured data
(TC problem), and (ii) increasing the temporal resolution (SR
problem).

ing and receiving data as a connection-oriented technology.
Messages exchanged through these sockets are in the form of
strings and maintain a stable structure. For the client’s requests
the structure is as follows: [function-id, size, data], where
“function-id” is the identifier of the function we want to run
on the server, “size” is the length of the data stream after the
increment of its temporal resolution or the length of each data
stream that forms the tensor, and “data” is the representation of
measurements as comma-separated strings for both functions.
When the operation is completed, the values are written in the
form of a string and sent to the client.

Fig. 3 shows the proposed architecture based on the server-
client model for (i) recovering missing values from multiple
sensor streams (TC problem) and (ii) increasing the temporal
resolution of a single time series (SR problem). Focusing on
the more complex TC problem, the first step is to establish
the connection between the two entities based on the TCP
protocol. Then, the client sends a request to the server with
the structure described above. Although the data streams
are obtained from the pressure sensors in a one-dimensional
structure, the data recovery problem is solved more efficiently
by converting the one-dimensional time series into third-order
tensors. To this end, a Hankelization function is applied, where
by using a sliding window we convert vectors to matrices,
which are second-order data structures. Combining multiple
Hankelized matrices we create the three-dimensional tensor to
be completed. Next, the reverse processes are carried out (i.e.,
separating the tensor slices and applying a de-Hankelization
process) such that the completed time series are sent from the
server to the client as a response to the preceding request.
Notice that the dashed lines in the figure symbolize the time
intervals where the entities are blocked and expect some
message to awake them based on the TCP protocol, thus
synchronizing the communication between them. A similar
approach can be followed to execute the SR function for
temporal super-resolution of single data streams.

2019 27th European Signal Processing Conference (EUSIPCO)

IV. PERFORMANCE EVALUATION

In this section, the performance of our proposed socket-
based approach using standalone Matlab and Java applications,
hereafter called “Standalone Sockets”, is evaluated and com-
pared against two alternatives, namely, (i) the use of standalone
applications based on I/O operations on files, hereafter denoted
by “Standalone Files”, and (ii) a socket-based execution of the
code via the Matlab’s environment, hereafter called “Matlab
Sockets”. Although the second case is expected to yield the
optimal performance, however, it necessitates the use of a
paid license for using Matlab, thus increasing the expense for
deploying an integrated system. On the other hand, the first
case is expected to result in higher execution times, due to the
use of read/write/delete operations on data files. Ideally, we
would like the performance of our approach, which does not
depend on paid software, to approximate as much as possible
the performance of “Matlab Sockets”.

As mentioned already, the above three Matlab-Java integra-
tion methods are evaluated in two distinct problems, namely,
(a) the recovery (a.k.a completion) of missing values in tensor-
structured data (TC), and (b) the temporal super-resolution
(SR) of one-dimensional time series. More specifically, the
Matlab toolbox TMac2 is used to solve the TC problem, whilst
the built-in Matlab function fillmissing is employed
to perform SR using a piecewise cubic spline interpolation.
The necessary standalone applications are extracted in both
cases. Furthermore, both problems are solved for a set of real
pressure data collected by a water distribution network, in the
framework of the SmartWater2020 project.

More specifically, according to the project’s specifications,
the data is examined once a day and the sampling period of
the sensors is fixed at 15 minutes. We examine three different
window sizes w for the received data, w ∈ {256, 512, 1024}.
For the TC problem, a Hankelization process is performed
first, to express the received time series data in a matrix form,
as it is required by TMac. For this, each time series is scanned
using a sliding window of 32 samples with a step size of 16
samples. The subsequent tests make use of Matlab 2017a on a
Windows 10 64-bit computer featuring an Intel Core i3-5005U
processor at 2 GHz and 4 GB of RAM.

The performance of the three integration methods is mea-
sured in terms of the average execution time over 100 requests.
As a request, we consider the call to one of the functions for
TC or SR. We emphasize that all the requests are called with
the same parameters and data to maintain their homogeneity.
Notice also that, although the absolute execution times may
be highly dependent on the target machine, however, we are
only interested in the relative times between the three methods,
which are evaluated on the same machine. For the “Standalone
Files” method specifically, a synchronization between writing
files and running the application is required. Thus a requester
with a busy wait loop expects to record all the values of
each data stream and write all the files before calling the
corresponding function. Instead, for the other two methods,

2Code available at https://xu-yangyang.github.io/TMac/.

which are based on a client-server model, the server is always
able to apply the desired functionality when submitting a
request. As such, the timing requirement is satisfied by the
architecture itself.

Test-case 1: Tensor completion. The TC problem is solved
for a set of 4 pressure streams, whose missing values are
recovered simultaneously. We test two different fill ratios,
namely, 40% and 60%, by artificially generating streams with
60% and 40%, respectively, of randomly missing entries. The
overall execution time of the TC function refers to the time
period during which the request is made, the TC operation is
completed, and the output results are obtained.

The completion of the TC function is common to both the
file- and the socket-based architectures, whereas the export of
the results differs. In the former case, the results are written
in files and read by the applicant, which has the responsibility
to delete them. In the latter case, it suffices to send the results
through the socket.

Figs. 4a-4b depict the average execution times for the TC
functionality for the three integration methods and the three
window lengths, with the 95% confidence intervals for the
range of mean execution time shown on top of each bar.
As expected, the “Standalone Files” method yields the worst
performance for both fill ratio values and for all window
lengths. On the other hand, the two socket-based methods
achieve a significant reduction of the execution times. Most
importantly, the performance of our proposed “Standalone
Sockets” approach is very close to that of its “Matlab Sock-
ets” counterpart, while offering the advantage of a non-paid,
license-free, system design, in contrast to “Matlab Sockets”.
Furthermore, as the window length increases, more resources
are required by the system, which increases the average
execution times for all the methods compared. Finally, as
the fill ratio increases (i.e., fewer entries are missing) all the
methods are executed in slightly reduced times, as expected.

Test-case 2: Temporal super-resolution. The SR problem
is solved for each one of the 4 pressure streams separately.
Specifically, an increase of the time resolution is performed
for data windows of length 512, with a zoom factor equal
to two. Doing so, the intermediate flow created and sent to
the server has a length of 1024 samples with the actual and
missing entries alternating. Fig. 5 shows the average execution
times for the three integration methods and for each one of
the 4 pressure streams. As in the case of TC, the “Standalone
Files” architecture results in the worst performance for all
the streams. On the other hand, our proposed “Standalone
Sockets” method yields a similar performance with, or even it
outperforms, the optimal “Matlab Sockets” scheme.

V. RELATED WORK

Matlab aims at reusing legacy code providing a two-way
integration with other programming languages. Such an archi-
tecture is often found in the creation of virtual laboratories
to support distance learning. The independence of the entities
used enhances their easy replacement with different technolo-
gies, without losing the functionality of the system. The server

2019 27th European Signal Processing Conference (EUSIPCO)

(a)

(b)

Fig. 4: Average execution times for the TC problem and for a
fill ratio of (a) 40% and (b) 60%, using the three Matlab-Java
integration methods.

Fig. 5: Average execution times for the SR problem and the
four streams, using the three Matlab-Java integration methods.

entity is used, among other things, as a math engine for
making calculations or producing simulation components [2]–
[4]. The client entity is dedicated to the development of the
graphical interface from which the user can interact with
system and receive feedback. Depending on the requirements

of each application, the graphical interface can be implemented
as a clean Java GUI [3] or a web-based GUI [2], [4]. The
independence of the involved entities is such that it even
applies to the underlying protocol for data exchange. Although
the most popular standard we encounter is TCP, depending
on system specifications, we can also find ActiveX, DDE [3].
In [5], the problem of not existing proper support for recalling
Matlab functions from within Java VM integrated with Matlab
is highlighted. The need for two-way asynchronous communi-
cation was resolved by an adjective producer-consumer model.
Furthermore, a complete Java-based framework for carrying
out DSP tasks for wireless sensor networks applications has
been proposed in [9], [10].

VI. CONCLUSIONS AND FUTURE WORK

This paper examined a socket-based method for integrating
Matlab and Java codes in an industrial setting, whilst relying
on a fully non-paid, license-free implementation. A compar-
ison with two alternative methods, namely, a method based
on I/O file operations and an optimal socket-based method
that executes the codes directly in a Matlab environment,
revealed the high performance of our adopted scheme. More
specifically, an experimental evaluation by solving the tensor
completion and temporal super-resolution problems using real
pressure data demonstrated the inefficiency of the file-based
approach. On the contrary, our socket-based method, whose
performance approximates closely, or even outperforms, the
one of the Matlab-based counterpart, enables the design of a
robust, independent and portable system, based on the client-
server model, without requiring a paid Matlab license.

A critical issue in industrial applications is related to data
security. For this, we are interested in extending the socket-
based approach by incorporating a data encryption mechanism
applied to the requests sent from the client, as well as to
the corresponding functions when sending the response to the
request from the server.

REFERENCES

[1] J. Sanchez, “Virtual and remote control labs using Java: A qualitative
approach”, IEEE Control Syst. Mag., 22(2):8–20, 2002.

[2] C. Röhrig and A. Jochheim, “Java-based framework for remote access
to laboratory experiments,” IFAC Proc. Volumes, 33(31):67–72, 2000.

[3] C. Schmid, “A remote laboratory using virtual reality on the web,”
Simulation, 73(1):13–21, 1999.

[4] K. Magnusson, S. Scandpower, and M. Hogskola, “Integrating Java
with a Matlab environment at Studsvik Scandpower,” Dissertation, 2002
(https://bit.ly/2tN5ovP).

[5] A. Naderlinger, J. Templ, S. Resmerita, and W. Pree, “An asynchronous
Java interface to MATLAB,” in Proc. 4th Intl. ICST Conf. on Simulation
Tools and Techniques, Barcelona, Spain, 21-25 Mar., 2011.

[6] M. Xue and C. Zhu, “The socket programming and software design for
communication based on client/server,” in Proc. IEEE Pacific-Asia Conf.
on Circuits, Comm. and Systems, Chengdu, China, 16-17 May, 2009.

[7] D. Ruble, Practical Analysis and Design for Client/Server and GUI
Systems, Prentice Hall, 1997.

[8] S. D. Indu et al., “Wireless sensor networks: Issues & challenges,” Intl.
J. of Computer Science and Mobile Comp., 3(6):681–685, 2014.

[9] H. Kwon et al., “Experiments with sensor motes and Java-DSP,” IEEE
Trans. Education, 52(2):257–262, 2009.

[10] F. Aiello et al., “A java-based agent platform for programming wireless
sensor networks,” The Computer Journal, 54(3):439–454, 2011.

2019 27th European Signal Processing Conference (EUSIPCO)

