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Abstract—We present a method for detecting early signs of
Parkinson’s disease from keystroke hold times that is based on the
Tensor-Train (TT) decomposition. While simple uni-variate meth-
ods such as logistic regression have shown good performance on
the given problem by using appropriate features, the TT format
facilitates modelling high-order interactions by representing the
exponentially large parameter tensor in a compact multi-linear
form. By performing time-series feature extraction based on
scalable hypothesis testing, we show that the proposed approach
can significantly improve upon state-of-the-art for the given
problem, reaching a performance of AUC=0.88, outperforming
compared methods such as deep neural networks on the problem
of detecting early Parkinson’s disease from keystroke dynamics.

Index Terms—Tensor Decomposition, Tensor Train, Feature
Extraction, Parkinson’s Disease.

I. INTRODUCTION

Parkinson’s disease (PD) is one of the world’s most preva-
lent neurodegenerative diseases, second only to Alzheimer’s.
Despite that, PD is diagnosed through a set of neurological
tests at a clinic [1], [2], and is largely based on a specialist
interpretation of symptoms. These tests are subjective, costly,
protracted and imprecise, in particular for those who suffer
from Parkinson’s disease at the early stages [3]. In particular,
subtle motor impairments become evident shortly after disease
onset, but much before actual clinical diagnosis [4].

In order to provide tools for the early detection and diagno-
sis of Parkinson’s disease that are unobtrusive, ubiquitous, and
cost-effective, the authors of [4], [5] evaluate the accuracy of
predicting early detection of PD through the analysis of typing
logs by several subjects that have PD or belong to the control
group. In these works, keystroke dynamics are analysed with
a focus on hold times (i.e. the length of time between pressing
and releasing a key), as this measure is considered indepen-
dent of typing skills. In [4], the utilisation of the so-called
neuroQUERTY index (nQi) method is used, in order to detect
PD patients during a testing session. In [5], a simpler and
easier to reproduce method is proposed that is based on logistic
regression and features designed specifically for this problem.
In more detail, the mean absolute consecutive difference
(MACD) feature is utilised in a uni-variate logistic regression
setting, achieving an AUC=0.85 compared to 0.81 in [4].

In this paper, we are motivated by the success and wide
range of applications of tensor methods and multi-linear
analysis in signal processing and machine learning [6], [7],

leading to a set of techniques that are both efficient as well
as scalable, providing state-of-the-art accuracy in several
applications with a significant reduction of parameters in
contrast to e.g., deep learning. In more detail, we propose a
method based on the Tensor-Train decomposition in order to
provide even more accurate models for the detection of early
Parkinson’s Disease from keystroke dynamics by modelling
high-order feature interactions. In more detail, the logistic
regression approach utilised in [5] can be considered as a
special case of the exponential machines regression presented
in [8], where the Tensor Train decomposition is utilised in
order to efficiently learn exponentially many interactions in
our data, potentially leading to better generalisation models.
As we show in what follows, the proposed method can
achieve an AUC=0.88, in comparison to previous work that
achieve AUC=0.81( [4]) and AUC=0.85( [5]).

II. RELATED WORK

In this section, we briefly review some of the related work
to this paper. In particular, the neuroQWERTY index(nQi)
method was proposed in [4] to classify the typing sessions
of participants to Parkinson’s sufferer or control group. This
paper partitions each typing session into a set of 90 seconds-
long window. These partitions do not overlap and a partition is
removed if it contains less than 30 elements. A 7-dimensional
feature vector is created for each window, where each vector
includes the partition’s outliers proportion, skewness, flight
time between consecutive keystrokes, and the proportion of
elements in four equal bins. An ensemble of 200 linear support
vector regression models with grid search hyper-parameter
optimisation is used to be trained with an external data set. The
median of the 200 regression model of each partition i is the
nQii value. The nQi score for a typing session is defined as
the average of medians over I partitions. Ref. [4] achieved
Area Under Receiving Operating Character curve (AUC)=
0.81 by applying cross-validation training on early PD data set
and test on de novo data set, and then vice-versa. However,
Ref. [5] achieved a similar AUC=0.82 by utilising a simpler
approach that is based on a single feature from each session,
the standard deviation, with a simple logistic regression model.
Furthermore, in [5] a more sophisticated time series feature
has been proposed, namely the mean absolute consecutive
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difference (MACD)1. By using this single feature from a
typing session in the same logistic regression setting, the
authors are able to achieve a performance of AUC=0.85, while
a performance of more than AUC=0.80 is achieved by just a
few hundred keystrokes.

III. DATA SET

The data set used in this paper is drawn from the original
study of [4]. 85 participants are included, with each partic-
ipating in a typing session of around 15 minutes. The data
set includes 42 Parkinson’s Disease patients and 43 control
subjects, that are further separated into two sets. Namely,
the first set includes patients that are newly diagnosed and
untreated (de novo PD), and the second set contains recordings
of patients that have had a confirmed diagnosis in less than
five years (early PD). The de novo PD contains 24 subjects
with Parkinson’s and 30 control, while the early PD include
18 Parkinson’s patients and 13 control.

IV. FEATURE EXTRACTION

While many features can be extracted from data, and in
particular from time-series, not every feature is informative
and relevant to the target problem. In order to facilitate feature
extraction in this paper, we utilise the Scalable Hypothesis
(FRESH) algorithm [9]. FRESH encapsulates a collection
of both static and dynamic features, while by performing
significance testing is able to select the relevant features that
are highly significant with respect to the true labels of the
data set. We use FRESH on the training data in order to
select the most relevant features for this problem, which are
subsequently utilised in the compared learning models after
normalising for mean and unit variance. We note that we use
the tsfresh package, implementing the FRESH algorithm
[9]. This package combines 63 time series characterisation
methods to advance the feature extraction process.

The features with higher significance overall are pre-
sented in Table I. Briefly, Change_quantiles, aggregates
consecutive differences between elements of a data record.
Cid_ce is an estimate of the time series complexity, and
Fft_coefficient calculates the Fourier coefficients of
the one-dimensional discrete Fourier Transform. More details
regarding these features can be found in [10] and [11].

TABLE I
THE LIST OF FRESH FUNCTIONS ALONG WITH PARAMETERS APPLIED TO

PRODUCE THE MOST RELEVANT FEATURES INCLUDING AGGREGATED
CONSECUTIVE DIFFERENCES BETWEEN ELEMENTS, ESTIMATE OF THE

TIME SERIES COMPLEXITY, AND FOURIER COEFFICIENTS OF THE
ONE-DIMENSIONAL DISCRETE FOURIER TRANSFORM.

Feature names and related parameters
cid ce( normalize=False)

fft coefficient(coeff=53, attr=abs)
change quantiles(ql=0.6, qh=1.0, isabs=True, f agg=mean)
change quantiles(ql=0.6, qh=0.8, isabs=True, f agg=mean)

1MACD is simply the mean of the absolute value of first order differences,
applied on hold times.

V. METHODOLOGY

Matrix component analysis methods have seen rapid devel-
opments over the last decades including Principal Components
Analysis (PCA), Non-negative Matrix Factorisation (NMF),
Independent Component Analysis (ICA), and Sparse Com-
ponent Analysis (SCA) [12]–[14]. These approaches evolved
into standard tools for classification, feature extraction and
blind source separation. The modern heterogeneous sensor
modalities provide immense data sets, naturally they can be
represented by tensors or multi-way arrays. Reformatting the
tensors as a matrix and apply classical two-way analysis
instead of tensor operations are not always a good practice.
Instead of pair-wise analysis, the higher order tensor decom-
position offers an opportunity to capture multiple interactions
and coupling through developing complex models. Tensor
decomposition methods are not only matrix factorisation but
also they can capture multiple interactions and coupling [15]–
[19]. An approach to improve the performance of the ma-
chine learning algorithms is to model high-order interactions
between features. This is in contrast to traditional linear
models, as modelling such interactions results in a gigantic
parameter tensor, which is challenging to both train and fit
into memory. This problem can be alleviated by adopting the
Tensor Train (TT) representation, where an exponentially large
tensor can be represented in a compact multi-linear format
[20]. In this paper, we propose utilising a Tensor Train-based
regression framework, where exponential interactions between
our features can be modelled in an efficient and robust manner
[8]. Such interactions can be modelled by considering the
traditional linear model

ŷ(x) = 〈x,w〉+ b,

where the prediction is generated by the dot product of our
features x and parameters w, with an arbitrary loss function
`. To consider all interactions, the model above is extended
following [8] as,

ŷ(x) =
1∑

i1=0

...
1∑

id=0

Wi1...id

d∏
k=1

xikk . (1)

where the weight tensorW has a dimension d and contains 2d

elements. xk corresponds to the feature k where k = 1, ..., d,
while subsets of features are enumerated with a binary vector
(i1, . . . , id), with ik = 1 if the k-th feature belongs to the
subset. Given that Eq. 1 can be written as a tensor dot product,
ŷ(x) = 〈X ,W〉, where

Xi1,...,id =
d∏

k=1

xikk . (2)

In this way, the Tensor Train format can be utilised to
compactly represent the parameter tensor W .

In more detail, the d-dimensional tensor W is computed as
a product of d− 2 matrices and 2 vectors,

Wi1...id = G1 [i1] ...Gd [id] , (3)
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where G1 [i1] and Gd [id] are vectors with dimensions of 1×r
and r×1. For any ik, Gk [ik] where k = 2, ..., d−1, is a r×r
matrix. Gk matrix matching, the same dimension k, is called
as the k-th TT-core. The size r is called as TT-rank of the
tensor W which is the slice-size of Gk [ik]. We note that the
TT-rank adjusts the balance between computation efficiency
of the tensor operations and the representational power of the
TT-format itself [8]. We finally note that the TT-rank of the
data tensor X is always 1, as this tensor can be represented
TT-core format as:

Gk [ik] = xikk ∈ R1×1, k = 1, ..., d. (4)

where ik ∈ {0, 1}. Given features extracted as described in
Section IV, we apply the Riemannian gradient descent opti-
misation scheme proposed in [21] to optimise the parameter
tensor W , solving the following optimisation problem,

min
W

L(W)

subject to TT-rank(W) = r0 (5)

where

L(W) =
N∑

f=1

`(〈X f ,W〉, y(f)) + λ

2
||W||2F . (6)

Where Xf is a d-dimensional feature vector of f-th object,
N is the total number of objects or projection, and λ is
the regularisation parameter. We further extend this model to
incorporate Recurrent Neural Networks (RNNs) for capturing
dynamics in the final representation. We utilise an RNN layer
for each view of the data tensor X , thus extracting a set of
latent features from each. Subsequently, these are factored as
a TT-tensor in order to model all 2d interactions, while a fully
connected layer is used for classification. The entire model
is trained end-to-end with Stochastic Gradient Descent (SGD)
(Section VI-B).

VI. EXPERIMENTS AND RESULTS

In this section, we present the results that compare the
proposed tensor-based approach to previous works on the
same data set, such as [4] and [5], following the same
evaluation protocol and reproducing results presented in each
work. Namely, we compare with the nQi method presented
in [4], the uni-variate models presented in [5] that include
the Stdev and MACD models, as well as the multivariate
models that utilise the FRESH feature extraction as described
in Sec. IV. Furthermore, we compare with a model based on
Recurrent Neural Networks, and in particular the so-called
Gated Recurrent Units (GRU).

Detailed results are presented in Table II, where we show
both accuracy and area under the curve (AUC) for each of
the compared methods. Furthermore, in Figure 1, the ROC
curve of the proposed method in comparison to related work
is shown, where FRESH-TT clearly outperforms all compared
methods. In the following, we discuss the different approaches
employed along with the resulting scores.

TABLE II
THE PERFORMANCE OF ALL THE MODELS EVALUATED IN THE RECENT

PAPERS ALONG WITH THIS PAPER, INCLUDING TRUE AND FALSE
POSITIVES (TP, FP), TRUE AND FALSE NEGATIVES (TN, FN), AREA

UNDER THE CURVE (AUC), AND ACCURACY.

Model TP FN TN FP AUC Accuracy
nQi [4] 30 12 36 7 0.81 0.77

Stdev [5] 27 15 37 6 0.82 0.75
FRESH (5 Features) [5] 36 6 29 14 0.80 0.76

MACD [5] 34 8 35 8 0.85 0.81
FRESH-GRU 22 20 38 5 0.65 0.70

FRESH-LR (4 Features) 31 11 36 7 0.83 0.79
FRESH - TT 36 6 39 4 0.88 0.88

Fig. 1. The ROC curve of the FRESH-TT model and all other models
discussed in this paper namely Stdev, FRESH, MACD and nQi is presented.
Except nQi, all values are reproduced through the same cross-validation
method as described in [4].

A. FRESH - Logistic Regression (FRESH-LR)

To offer a baseline, we use a feature extraction method
based on Scalable Hypothesis algorithm (FRESH) and perform
binary classification by using logistic regression. The selected
features that showed higher significance for the data set are
listed in Table I. This model is evaluated by using the early
PD and the de novo PD data set following [4], that is
training on early PD and testing on de-novo and vice versa
utilizing cross-validation. This model achieves Area Under
curve (AUC)=0.83.

B. FRESH - Gated Recurrent Units (FRESH-GRU)

Recurrent Neural Networks (RNN) are well-known for
being able to model arbitrary temporal dependencies when
analysing time series data [22], acting as universal approxi-
mators to non-linear dynamical systems [23], [24]. We specif-
ically utilise Gated Recurrent Unit (GRU) for capturing tem-
poral dependencies, since less parameters are required in
comparison to Long Short-Term Memory recurrent neural
networks (LSTM) [25] while maintaining the same level of
performance such as LSTMs. When directly utilising RNNs
on the raw-time series of keystrokes, the results are much
worse than compared models. Therefore, by experimenting, we
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TABLE III
THE PERFORMANCE OF FRESH TENSOR TRAIN (FRESH-TT), MEAN ABSOLUTE CONSECUTIVE DIFFERENCE (MACD), FRESH-LR, STDEV MODELS

OVER DE NOVO AND EARLY PD DATA SETS. TRUE AND FALSE POSITIVE(TP, FP), TRUE AND FALSE NEGATIVE (TN, FN) ARE DEMONSTRATED FOR
FURTHER ANALYSIS.

FRESH-TT MACD FRESH-LR Stdev
TP FN TN FP TP FN TN FP TP FN TN FP TP FN TN FP

De novo PD 20 4 28 2 19 5 25 5 18 6 25 5 15 9 26 4
Early PD 16 2 11 2 15 3 10 3 13 5 11 2 12 6 11 2

Total 36 6 39 4 34 8 35 8 31 11 36 7 27 15 37 6

Fig. 2. The relationship between the number of keystrokes and classification
performance analysed. The x axis presents the length of truncated time series.
In right y axis (blue), shows the total number of keystrokes analysed over all
sessions of 85 participants. The left y axis (red) represents the AUC obtained
by applying the FRESH-TT model over truncated time series.

concluded that the number of data available is not sufficient for
RNNs to discover the appropriate representations. Hence, we
resorted in feeding the FRESH features to the GRU layers
which increased the accuracy significantly. In this method,
first we model each dimension of the data with a GRU, then
extract 4 features form each. Then we factor these features
as a TT-rank one tensor train to model all 2d interactions and
afterwards we train end-to-end with stochastic gradient descent
(SGD). The FRESH-GRU model on this data achieves an
AUC=0.65, which is still quite lower than compared models.
This is again likely due to the number of data available for
the given problem and data set.

C. FRESH - Tensor Train (FRESH-TT)

FRESH with Tensor Train (FRESH-TT) represents the re-
sults for the methodology proposed in this paper, as described
in Section V. After feature extraction, we utilise the TT
decomposition to represent and estimate the model parameters
in the TT-format. We utilise the T3F library that provides
tools for working with the TT decomposition, supporting
GPU executing and parallel processing of tensor batches. The
challenge of finding the optimal TT-rank is a part of our
optimisation process. We experienced various TT-ranks, and
experimentally we achieved the best result value of 8 (see
table IV to view the relationship between TT-ranks and AUCs).
As can be clearly seen in Table II and Figure 1, the proposed

method achieves an AUC=0.88, outperforming the second-best
method proposed in [5] with AUC=0.85.

By applying the FRESH method to extract features and
estimate the model parameters with TT decomposition and
classifying with logistic regression, we acquire the evalua-
tion scores shown in Table II. Further exploration regarding
performance of FRESH-TT along with other models over
de novo PD and early PD data sets, in the same way that
discussed in [4], is shown in Table III. This analysis include
True positive and negative and also False positive and negative
test results. It is clear from observing the results that the
proposed FRESH-TT method appears much more robust than
all compared methods. Furthermore, in this study we find
that the proposed FRESH-TT method achieves an AUC =
0.88, this outperforming significantly all the models previously
suggested. Despite prior research that suggest approaches to
analyse every element of the hold times series h, FRESH-TT
can obtain effective classification without observing the entire
time series. Fig. IV exhibits the dependency on classification
performance with the number of keystrokes analysed. We
curtail time series h after a certain number of elements and
perform classification according to the FRESH-TT model. Fig.
2 demonstrates that one may achieve outstanding performance
(AUC > 0.87) from analysing approximately 1.5K keystrokes
in a typing session.

TABLE IV
THE DEPENDENCE OF THE CLASSIFICATION PERFORMANCE OF THE TOP

FIVE TT-RANKS EVALUATED BETWEEN THE RANGE OF 1 TO 100. THE
BEST PERFORMANCE (AUC=0.88) ACHIEVED WITH TT-RANK=8.

TT-Rank AUC Accuracy
1 0.5907 0.6648
2 0.8397 0.8013
4 0.8578 0.7921
6 0.8330 0.7691
8 0.8823 0.88

10 0.8568 0.8013

VII. CONCLUSIONS

In this paper, we proposed a method based on appropriate
feature extraction and tensor decomposition applied to the
problem of detecting early Parkinson’s disease from keystroke
dynamics. The proposed method is based on feature extraction
with scalable hypothesis testing, as well as utilising the Tensor-
Train decomposition for modelling high-order interactions
amongst features. We compared against both previous work,
as well as extensions of the proposed model with recurrent
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neural networks. We show that the proposed method improves
state-of-the-art results on the problem, reaching an AUC=0.88,
while still being efficient in terms of complexity, leading to
models that can be easily utilised in embedded systems and
other low-power devices for ubiquitous patient monitoring.
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