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Abstract—Parkinson’s disease (PD) is a common neurode-
generative disorder with prevalence rate estimated to 1.5 %
for people age over 65 years. The majority of PD patients is
associated with handwriting abnormalities called PD dysgraphia,
which is linked with rigidity and bradykinesia of muscles involved
in the handwriting process. One of the effective approaches of
quantitative PD dysgraphia analysis is based on online hand-
writing processing. In the frame of this study we aim to deeply
evaluate and optimize advanced PD handwriting quantification
based on fractional order derivatives (FD). For this purpose,
we used 37 PD patients and 38 healthy controls from the
PaHaW (PD handwriting database). The FD based features were
employed in classification and regression analysis (using gradient
boosted trees), and evaluated in terms of their discrimination
power and abilities to assess severity of PD. The results suggest
that the most discriminative and descriptive information provide
FD based features extracted from a repetitive loop task or a
sentence copy task (maximum sensitivity/specificity = 76 %, error
in severity assessment = 14 %, error in PD duration estimation
= 22 %). Next, we identified two optimal ranges for the order
of fractional derivative, α = 0.05 – 0.45 and α = 0.65 – 0.80.
Finally, we observed that inclusion of pressure, azimuth, and tilt
together with kinematic features into mathematical modeling has
no influence (positive or negative) on classification performance,
however, there was a notable improvement in the estimation of
PD duration.

Index Terms—online handwriting; Parkinson’s disease; dys-
graphia; fractal calculus; fractional derivatives; classification;
regression
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I. INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative
disorder affecting approximately 1.5 % of the world population
aged over 65 years [1]. The risk of being affected by PD
increases with age. Therefore, as populations age, the inci-
dence rate is expected to be doubled in the next 15 years [2].
The exact pathophysiological cause of PD has not yet been
discovered, though a rapid degeneration of dopaminergic cells
in the substantia nigra pars compacta is the most significant
biological finding linked with PD. Tremor at rest, rigidity,
bradykinesia and postural instability are considered as the
primary motor symptoms of PD [3]. Non-motor symptoms
such as cognitive impairment, sleep disturbances, depression,
etc. may also arise [4], [5]. Moreover, PD patients usually
develop additional axial motor symptoms, e.g. hypokinetic
dysarthria, dysphagia, and gait freezing [5].

Considering the primary motor symptoms of PD to be in
line with cognitive, perceptual and motor requirements of
handwriting, the disrupted handwriting of PD patients may be
used as a significant biomarker in PD diagnosis [6]. Especially,
by detecting micrographia (progressive decrease of letter’s am-
plitude or width), which is the most commonly observed hand-
writing abnormality in PD patients [7]. Nevertheless, some
PD patients never develop micrographia, but they still exhibit
some other handwriting disabilities. Due to this complexity,
Letanneux et al. [8] started to use the term PD dysgraphia.
To be able to effectively quantify manifestations of PD in
handwriting, more advanced approaches were introduced [9],
[10]. They are based on digitizing tablets that are able to
acquire x and y trajectories along with temporal information
(this kind of signal is called online handwriting). Therefore,
we are not limited to analyze the spatial features only, but we
can process temporal, kinematic or dynamic characteristics.

Researchers have been exploring the influence of many
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handwriting/drawing tasks in PD dysgraphia analysis, from
the simplest ones (loops, circles, lines, Archimedean spiral,
etc.) to more complex (words, sentences, drawings, etc.) [10]–
[15]. The importance of kinematic features was confirmed by
most of the recent works, however, temporal, spatial, dynamic
or other more advanced features play their significant role
as well. For instance, Drotar et al. [10]–[12] achieved PD
classification accuracy up to 89 % using a combination of
kinematic, pressure, energy or empirical mode decomposition
(EMD) features. Average accuracy of 91 % was achieved
by Kotsavasilogloua et al. [16] using kinematic and entropy
based features extracted from simple horizontal lines. Some
other works reported even higher classification accuracies
(≈ 97 %) [17], [18], but based on a very small dataset.
Moetesum et al. [19] published a promising advanced ap-
proach by applying convolutional neural networks (CNN) on
handwriting data transformed into the offline mode, which
resulted in 89 % accuracy. Next, Taleb et al. [9] reported up
to 94 % accuracy of PD severity prediction using kinematic
and pressure features in combination with adaptive synthetic
sampling approach (ADASYN) for model training. Finally, in
our recent works [14], [15], [20] we introduced and evaluated
a new advanced approach of PD dysgraphia analysis exploiting
a fractional order derivative (FD) as a substitution of con-
ventional differential derivative during basic kinematic feature
extraction (i.e. velocity, acceleration, and jerk parameters). We
achieved up to 90 % classification accuracy employing only 5
FD-based kinematic parameters in these works. Nevertheless,
in comparison to conventional parameters, the newly proposed
FD-based features yielded better performance only in specific
tasks (continuous and/or repetitive movement) and in specific
applications such as PD severity estimation.

Therefore, the main objective of this study is to extend our
previous findings and perform a deeper and more sensitive
analysis of FD-based features, especially in terms of their dis-
crimination power and descriptive abilities. More specifically,
we aim to:
• explore the utilization of FD in the other dimensions of

online handwriting (i.e. pressure, azimuth, and tilt),
• identify an optimal combination of handwriting/drawing

tasks and the FD-based features in terms of discrimination
power and descriptive abilities,

• identify an optimal range of FD order α for classification
and regression analysis.

The rest of this paper is organized as follows. Section II
describes the used dataset and methodology. Results are sum-
marized in Section III. In Section IV the discussion related
to the results can be found and the conclusions are drawn in
Section V.

II. DATASET AND METHODOLOGY

A. Dataset

For the purpose of this work, we used the Parkinson’s
disease handwriting database (PaHaW) [11]. The database
consists of several handwriting or drawing tasks acquired in 37

PD patients and 38 age- and gender-matched healthy controls
(HC). Demographic and clinical data of the participants can
be found in Table I. The participants were enrolled at the First
Department of Neurology, St. Anne’s University Hospital in
Brno, Czech Republic. All participants reported Czech lan-
guage as their native language and they were right-handed. The
patients completed their tasks approximately 1 hour after their
regular dopaminergic medication (L-dopa). All participants
signed an informed consent form approved by the local ethics
committee.

TABLE I
DEMOGRAPHIC AND CLINICAL DATA OF THE ENROLLED PARTICIPANTS.

Gender N Age [y] PD dur [y] UPDRS V LED [mg/day]
Parkinson’s disease patients

Females 18 71.23 ± 8.03 9.55 ± 5.29 2.17 ± 0.84 1124.03 ± 535.84
Males 19 67.52 ± 13.15 7.26 ± 4.12 2.37 ± 0.86 1724.12 ± 733.03
All 37 69.32 ± 10.97 8.38 ± 4.80 2.27 ± 0.85 1432.19 ± 704.78

Healthy controls
Females 18 61.44 ± 9.89 - - -
Males 20 63.30 ± 12.79 - - -
All 38 62.42 ± 11.39 - - -

1 N – number of subjects; y – years; PD dur – PD duration; UPDRS V – Unified
Parkinson’s disease rating scale, part V: Modified Hoehn & Yahr staging score [21];
LED – L-dopa equivalent daily dose.

B. Data Acquisition
The PaHaW database [11] includes multiple handwriting

tasks, namely: Archimedean spiral; repetitive loops; letter l;
syllable le; Czech words les, lektorka, porovnat, and nepopad-
nout; Czech sentence Tramvaj dnes už nepojede. During
handwriting tasks performance, the participants were rested
and seated in a comfortable position with a possibility to look
at a pre-filled template. In case of some mistakes, they were
allowed to repeat the task. A digitizing tablet (Wacom Intuos
4M) was overlaid with an empty paper and the participants
wrote on that using the Wacom Inking pen. Online handwriting
signals were recorded with fs = 150 Hz sampling rate. The
following time sequences were acquired: x and y coordinates –
x[t], y[t]; time-stamp – t; on-surface (i.e. on paper movement)
and in-air (i.e. movement up to 1.5 cm above the paper) status
– b[t]; pressure – p[t]; azimuth az[t]; and tilt al[t].

C. Fractional Derivative
We discovered the potential of FD-based kinematic features

in PD dysgraphia analysis in our previous works [14], [15],
[20]. By substitution of the conventional differential deriva-
tive during feature calculation, we have developed a new
advanced approach of handwriting parametrization. Generally,
FDs can have wide range of settings and several approaches
of approximation (e.g. Caputo, Grünwald-Letnikov) [22]. In
this work, we utilized the Grünwald-Letnikov approximation
implemented by Jonathan Hadida. A direct definition of FD
Dαy(t) is based on finite differences of an equidistant grid
in [0, τ ] assuming that the function y(τ) satisfies certain
smoothness conditions in every finite interval (0, t), t ≤ T .
Choosing the grid [22]

0 = τ0 < τ1 < ... < τn+1 = t = (n+ 1)h (1)
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with
τk+1 − τk = h (2)

and using the notation of the finite differences

1

hα
∆α
hy(t) =

1

hα

(
y(τn+1) −

n+1∑
v=1

cαv y(τn+1−v)

)
, (3)

where
cαv = (−1)v−1(αv ). (4)

The Grünwald-Letnikov implementation is defined as:

Dαy(t) = lim
h→0

1

hα
∆α
hy(t), (5)

where Dαy(t) denotes a derivative with order α of function
y(t), and h represents sampling lattice.

D. Handwriting Features

The first set of parameters consists of conventional kine-
matic features extracted from all tasks of the PaHaW database
for both on-surface and in-air movement. It means we cal-
culated: velocity (rate at which a position of pen changes
with time [mm/s]), acceleration (rate at which the velocity
of pen changes with time [mm/s2]), jerk (rate at which the
acceleration of pen changes with time [mm/s3]), and their
horizontal and vertical variants [11], [23]. Next, we calculated
the kinematic features based on FD. Moreover, to further
extend and improve our previous research, FD was also
similarly applied to pressure, azimuth and tilt.

In the first step, the FD-based features were calculated for
different values of α in range from 0.1 to 1.0 with the step
of 0.1. Next, the most discriminative handwriting tasks were
selected and deeper analysed with a finer step of α (0.01).
This selection was made in order to reduce computational
cost of the analysis. Statistical properties of all extracted
handwriting features were expressed using mean, median,
standard deviation (std), and maximum (max).

E. Statistical Analysis

To evaluate the discriminative power of the handwriting
features, a multivariate binary classification analysis based
on the state-of-the-art Gradient Boosted Trees (10-fold cross-
validation with 50 repetitions) was employed. More specifi-
cally, the famous XGBoost algorithm [24] was used in light
of its ability to achieve good performance on a small dataset.
Classification performance was evaluated by the Matthew’s
correlation coefficient (MCC), classification accuracy (ACC),
sensitivity (SEN), and specificity (SPE). Next, in order to
evaluate the power of handwriting features to estimate val-
ues of PD duration and UPDRS V, regression analysis was
performed. The same boosting tree algorithm (XGBoost) with
the same supervised learning setup was used. Regression
performance was evaluated by mean absolute error (MAE),
root mean square error (RMSE), and estimation error rate
(EER).

III. RESULTS

The results of classification and regression analysis for
the FD-based handwriting features extracted from all tasks
can be found in Table II. Selection of the most discrimi-
native/descriptive handwriting tasks for the consequent opti-
mization of FD was performed based on feature importances
of trained models (feature importance quantifies the relative
importance of the feature in an ensemble of the trained
XGBoost model [24]). Distribution of particular tasks and
derived features for all classification/regression scenarios can
be found in Figure 1. Results of the classification/regression
analysis after the fine tuning of FD are reported in Table III.
Finally, distributions of the FD order α among the fine-tuned
parameters are visualized in Figure 2.

TABLE II
RESULTS OF CLASSIFICATION AND REGRESSION ANALYSIS

BASED ON ALL TASKS

Classification
MCC ACC [%] SEN [%] SPE [%] Feat
0.62 ± 0.14 80.60 ± 9.87 79.41 ± 14.52 80.56 ± 7.25 18

Regression
Scale EER [%] MAE RMSE Feat
UPDRS V 12.98 ± 7.01 0.55 ± 0.29 0.66 ± 0.42 3
PD duration 25.23 ± 3.65 4.42 ± 0.64 5.33 ± 0.89 30

1 MCC – Matthew’s correlation coefficient; ACC – accuracy; SEN –
sensitivity; SPE – specificity; Feat – number of features important for the
trained model; MAE – mean absolute error; RMSE – root mean squared
error; EER – estimation error rate; UPDRS V – Unified Parkinson’s disease
rating scale, part V: Modified Hoehn & Yahr staging score [21].

TABLE III
RESULTS OF CLASSIFICATION AND REGRESSION ANALYSIS FOR

SELECTED TASKS

Classification
Task MCC ACC [%] SEN [%] SPE [%] Feat
Sentence 0.34 ± 0.18 66.67 ± 12.45 65.79 ± 18.12 65.79 ± 21.58 21
Rep. loops 0.52 ± 0.11 76.00 ± 11.98 75.68 ± 12.36 76.32 ± 19.54 11

Regression
Task Scale EER [%] MAE RMSE Feat
Sentence UPDRS V 14.67 ± 7.44 0.63 ± 0.32 0.78 ± 0.40 1
Rep. loops UPDRS V 13.94 ± 7.61 0.61 ± 0.33 0.75 ± 0.41 2
Sentence PD duration 23.73 ± 10.67 4.05 ± 1.82 4.62 ± 1.83 33
Rep. loops PD duration 21.97 ± 8.97 3.75 ± 1.53 4.36 ± 1.60 39

1 MCC – Matthew’s correlation coefficient; ACC – accuracy; SEN – sensitivity; SPE –
specificity; Feat – number of features important for the trained model; MAE –
mean absolute error; RMSE – root mean squared error; EER – estimation error rate;
UPDRS V – Unified Parkinson’s disease rating scale, part V: Modified Hoehn & Yahr
staging score [21].

IV. DISCUSSION

Firstly, we performed the analysis using all tasks of the
PaHaW database utilizing features calculated for α from
0.1 to 1.0 with step 0.1 (10 FD-based features for one
handwriting parameter). As can be seen in the upper part
of Table II, ACC (80.60 %) corresponds with our previous
results (81.43 %) [14], while SEN and SPE were improved
by approximately 10 %. Number of features involved in the
trained model is 18, and as can be seen in Figure 1 (bottom
part of column a), besides the kinematic features the pressure
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Feature category

Kinematic Pressure Azimuth Altitude

Tasks

Repetitive letters le 
Word "porovnat"

Sentence 
Word "lektorka" 
Others

c)

Feature category

Kinematic Pressure Azimuth

Tasks

Repetitive letters leSentence 
Word "lektorka" Repetitive loops
Repetitive word "les"   Others

b)a)

Feature category

Kinematic Altitude

Tasks

Sentence Letters le Word "lektorka"

Fig. 1. Distribution of particular tasks and derived features in the trained XGBoost models: a) classification analysis; b) regression analysis (PD duration);
c) regression analysis (UPDRS V).
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Fig. 2. Distributions of FD order α among the fine-tuned parameters.

and azimuth parameters are also modeled. Based on the distri-
bution reported in the upper part of column a) (see Figure 1),
it is noticeable that the highest discriminative power provide
repetitive loops. Regarding the results of regression analysis,
the most suitable task for further optimization of the FD-based
features is the sentence (see the upper part of column b) and c)
in Figure 1). In comparison with our previous results [14], the
estimation error of PD duration differs minimally, however, the
resulted models include parameters coming from all feature
categories. In the case of UPDRS V, the value of EER
is similar again, but in this case, most of the features are
tilt-based instead of kinematic-based. Considering the facts
mentioned above, we can conclude that utilizing FD analysis

of pressure, azimuth and tilt does not have any noticeable
effect on model’s performance.

Secondly, we performed the optimization of FD-based fea-
tures extracted from the repetitive loops and sentence. We re-
calculated these features for α from 0.01 to 1.00 with 0.01
step (100 FD-based features for one time sequence) in order
to identify the optimal values of α. As can be seen in the upper
part of Table III, ACC for both tasks is lower in comparison
with the all task classification. It is the consequence of using
just a single task for classification, and it corresponds with
previous works [10], [11], [14], [20]. Nevertheless, we have to
point out that the main objective of this step is not to increase
the classification accuracy but to identify the optimal values
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of α. It is visible from the first column of Figure 2 that the
optimal α for PD classification is in ranges from 0.05 to 0.35
and 0.60 to 0.75. Regarding the results of regression analysis,
in the case of UPDRS V estimation, EER is slightly worse
in comparison with the first step. In the case of PD duration
estimation, EER is slightly better (by 2 – 3.5 %) than in the
first step and also in comparison with our previous work [14]
it was improved by 5 %. These results are probably caused by
the usage of fine-tuned FD-based features. From the middle
and last column in Figure 2, we may conclude that the optimal
value of α for PD severity assessment and duration estimation
is in ranges from 0.05 to 0.45 and from 0.65 to 0.80. By inter-
sectioning optimal α ranges of classification and regression
analysis, we created a final optimal range of α from 0.05 to
0.45 and from 0.60 to 0.80, that is recommended to be used
in the field of PD dysgraphia analysis.

V. CONCLUSION

Based on the results we can conclude that applying FD on
pressure, azimuth and tilt profiles has no influence (negative
or positive) on classification performance. However, there was
a notable improvement in the estimation of PD duration by
19 %. Next, in the field of PD dysgraphia analysis, we iden-
tified the optimal values of the FD order, which should be in
the range from 0.05 to 0.45 or from 0.60 to 0.80. Identification
of these ranges enables significant reduction of computational
cost (by approximately 50 %), because researchers do not have
to explore the full range of possible values of the FD order
during quantitative analysis of PD dysgraphia.

This study has several limitations and possible parts, that
could be further improved/explored. Since the processed
dataset is small, further studies on this topic should be held
in order to generalize the results. Next, the FD order could be
further tuned for horizontal and vertical movement separately.
And finally, some other approximations of FD (e.g. Caputo’s)
can further improve classification or regression performance.
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