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Abstract—Widely available digital ophthalmology data can be
used to implement accurate Computer-Aided Diagnosis Systems.
In this article we describe an automatic system which combines
text clinical annotations, demographical information, as well
as different types of ophthalmology image data to issue a
recommendation for cataract surgery. Textual annotations are
encoded using a standardized medical ontology nomenclature
to enable higher level modeling. Image data is processed by
convolutional neural networks to extract compact features. These
two types of data together with demographical information are
then inputted into a random forest classifier which then decides
if surgery is recommended. The method proposed is evaluated
on a real-life dataset, achieving accuracies and precisions around
90%. Several conclusions are drawn concerning the usefulness of
the different input data types, used independently or combined.

Index Terms—Ophthalmology, Information Fusion, Multi-
modal Image, Ontology, Cataract Surgery

I. INTRODUCTION

In daily clinical practice medical ophthalmologists take into

consideration patient current complaints, imaging data and past

medical history to decide on which treatment options should

be pursued, as illustrated in Fig. 1. We examine the question

of whether clinical annotations expressed in a structured way

and using ontologies can be combined with demographical

data and image data to build a reliable cataract surgery

recommendation system, following the approach outlined in

Fig. 1. This work can be considered a case-study on the use of

multimodal clinical information to construct computer-aided-

diagnosis (CAD) systems. In the following sections we provide

the details of the proposed system and present the results

obtained evaluating its performance on a real-life dataset.

A. Related Work

Multiple systems have been developed to support clinical

decision in ophthalmology. Medical evaluation combining

multiple image modalities as input data is becoming more

relevant as multimodal datasets become available [1]. Miri

et al. [2] used information derived from optical coherence

tomography (OCT) and color fundus photograph to segment

the optic disc region. Suzuki et al. [3] used information

from both OCT and infrared Scanner Laser Ophthalmoscopy

(SLO) to classify pseudodrusen sub-types. Balaratnasingam et
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Fig. 1. Overview of clinical workflow and proposed decision model.

al. [4] have improved the definition of clinical phenotypes

of cuticular drusen by combining different types of images,

from fundus photography to electron microscopy. Ontology

models and metrics have been applied to medical health record

processing in [5] and Chan et al. in [6] used an ontology vector

model based on the Systematized Nomenclature of Medicine

Clinical Terms (SNOMED-CT) to improve the performance

of clinical information indexing. Plastiras et al. [7] used an

ontology based model to combine personal health records

and electronic health records (EHR) for connectivity and

interoperability. Several works fused clinical information and

image data like Qi et al. [8] who combined three modalities

of magnetic resonance imaging (MRI) and working memory

clinical measures to obtain markers for working memory

deficits in schizophrenia.

B. Objectives and Novelty of the Work

To the best of our knowledge integration of all commonly

available patient data including biographical, clinical and

image data into a single clinical predictive model has been

used before only in our own work [9], which is here further

developed in the context of a different application. Besides

combining multimodal data, our approach proposes to convert
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all input data modalities into more compact representations,

to be used in well performing classifiers like random forests.

The relative importance of the different data types as well

as the value added by their fusion to the solution of the

problem at hand will also be researched. More concretely we

address the following questions: Can multimodal ophthalmic

image data be combined with medical records data to achieve

higher accuracy in predicting the need for cataract surgery

? Is all information equally relevant for automated treatment

recommendation ? Can data selection improve prediction per-

formance ? Can representation learning be used to represent

image information using compact features ? We answer these

questions by designing, building and testing the automatic

cataract surgery recommendation system described in the next

sections.

II. METHODOLOGY

A. Model Description

We propose to build the system outlined in Fig. 2 which

takes as inputs the three major data types identified before,

Demographical, Clinical Annotations and Image and outputs a

treatment recommendation decision. Fig.3 shows the process-

Fig. 2. Overview of the proposed solution

ing chain in more detailed form, identifying the pre-processing

needed to extract more compact data representations as well

as the fusion and classification steps. It can be seen that

the distinct input information types described in table I are

processed by separate pipelines. Structured data is directly

encoded in vector form. Unstructured clinical annotations

are expressed using ontologies as described in Subsection

II-B and multimodal image data are processed by several

convolutional neural network (CNN) models (one for each

image type) to compute compact features as described in

Subsection II-C. Feature fusion is done by stacking data from

selected input features. A forest of 200 randomized trees was

chosen as the classifier for the final prediction. This choice

was based on the good performance of this type of classifier,

its low computational requirements and the intelligibility of

the decisions.

B. Ontological Features

Medical annotations expressed in text in Portuguese were

first mapped into standardized medical terms and then trans-

lated into SNOMED-CT concepts [10] and encoded as vectors

containing a binary representation of the presence or absence

of any element of the set of SNOMED-CT term codes. An

Fig. 3. Proposed Model; SNOMED-CT – Systematized Nomenclature of
Medicine - Clinical Terms, BOW – Bag of Words, Tf-idf – Term Frequency
Inverse Document Frequency, LCS – Least Common Subsumer, CNN –
Convolutional Neural Network, RF – Random Forest.

TABLE I
INPUT DATA TYPES

Data Type Description

Structured
Demographic:Age, Sex, Civil State, Address

Prescriptions: Previous pharmacological prescriptions by active

principle

Unstructured Annotations by Ophthalmologist: Clinical diary written in unfor-

matted text describing clinical findings, conclusions and proce-

dure recommendations.

Ontological Ontological Information: Extracted from the Unstructured data

including clinical concepts (diagnosis, findings and therapy) and

encoded in SNOMED-CT accompanied by ontological distance

from the procedure as well as the least common subsumer (LCS)

computed between each concept and the labelled procedure.

Image Ophthalmic Images: OCT, Slit lamp color photographs of the

anterior segment of the eye, Scanning laser ophthalmoscopy

(SLO) images of the retinal posterior pole in three bands: red-

free blue reflectance (488 nm with low pass filter at 500 nm),

autofluorescence (488 nm without filter) and infra-red (820 nm))

abridged version of the SNOMED-CT ontology including the

modeled cataract surgery procedure is presented in Fig. 4.

The procedure term code was used as reference for the

computation of two ontological meta-features:

• Least common subsumer (LCS) [11] between each con-

cept in the ontology vector and the modeled procedure

concept – i.e. the most specific concept in the ontology

hierarchy which is an ancestor of both concepts.

• Shortest distance (by counting edges in the ontology

graph) between each concept in the ontology vector and

the procedure concept.

C. Image Features

Five different raster image modalities listed in table I

are used. Right and left eye images of the same modality

for each observation were vertically stacked an resized to

512× 256 pixels. A convolutional neural network (CNN) was

trained separately for each raster image modality using labeled

examples and used to output a 128 feature vector containing

the activation values of the neurons in the third from last layer.

The image feature extraction architecture is presented in Fig.

5. Network architecture parameters are listed in table II.

A CNN was chosen for its ability to implement an au-

tomated end-to-end representational learning of the image

information. An alternative feature processing system based

on autoencoders was tried without much success.
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Fig. 4. Abridged example diagram of the SNOMED-CT Ontology including
the modeled cataract procedure and a hypothetical vitrectomy procedure;
dashed line represents the path from the procedures to their LCS – Procedure;
shortest distance between the aforementioned concepts can be computed by
counting the number of graph edges along the dashed path

Fig. 5. CNN image feature extractor; OCT – Optical Coherence Tomography,
SLO – Scanning Laser Ophthalmoscopy, MLP – Multi-layer Perceptron

TABLE II
TRAINED CNN ARCHITECTURE. LAYER TYPE: I-INPUT,

C-CONVOLUTIONAL, MP-MAX-POOLING, D-DROPOUT (RATE=0.3),
FC-FULLY CONNECTED

Layer Type Maps and Neurons Filter Size

0 I 1 M x 512 x 256 N -

1 C 32 M x 15 x 15 N 15 x 15

2 MP 32 M x 8 x 8 N 8 x 8

3 C 64 M x 5 x 5 N 5 x 5

4 D 64 M x 5 x 5 N 5 x 5

5 MP 64 M x 4 x 4 N 4 x 4

6 C 128 M x 3 x 3 N 3 x 3

7 D 128 M x 3 x 3 N 3 x 3

8 MP 128 M x 3 x 3 N 3 x 3

9 C 128 M x 2 x 2 N 2 x 2

10 FC 128 N 1 x 1

11 FC 64 N 1 x 1

12 FC 2 N 1 x 1

D. Training and Testing Dataset

The data used to build the prediction model consisted

of 17,470 unique EHR of patients with average age of

TABLE III
MODEL PERFORMANCE WITH DIFFERENT INPUT DATA; RESULTS ARE

THE AVERAGE OF TEN MODEL RUNS; OCT – OPTICAL COHERENCE

TOMOGRAPHY, AS – ANTERIOR SEGMENT SLIT LAMP PHOTOGRAPH, RF –
RED-FREE SLO IMAGE, IR – INFRA-RED SLO IMAGE, AF –

AUTOFLUORESCENCE SLO IMAGE

Classifier Input Data Acc. (%) Prec. (%) Recall (%) F1 (%)

Structured Data 64.65 82.01 64.08 71.94

Ontological Data 83.88 89.34 82.84 85.97

Ontological Meta Data 83.88 89.34 82.84 85.97

All Ontological Data 83.56 89.37 82.39 85.73

All Non Image Data 86.04 91.59 84.46 87.88

CNN Features OCT 78.46 82.91 79.12 80.97

CNN Features AS 84.7 86.52 85.89 86.2

CNN Features RF 84.74 85.85 86.45 86.15

CNN Features IR 81.17 82.51 83.27 82.89

CNN Features AF 78.17 79.32 80.82 80.06

All CNN Features 86.43 86.31 88.82 87.55

Non Image + Learned 88.46 88.59 90.35 89.46

All Non Medical Features 86.88 86.67 89.28 87.95

69.73±14.31 and a male to female ratio of 46.14%/53.86%.

Records were divided into two equal parts representing pa-

tients who did and who didn’t undergo the procedure after

medical observation. Information of the data types listed in

table I were recorded for each observation.

E. Training and Computation Times

A split using 80:20 ratio into training and test subsets

was used for cross-validation in every experiment. Network

training and classification operations were performend using

the Keras framework and Tensorflow as the backend processor.

All computations were done using a computer equipped with

an Intel core i7-6700 CPU and an Nvidia 1080 GPU. The

computation time for all ontological features 0.14 ms per

record. The image representation learning using CNNs took an

average of 25 minutes per epoch. All models were trained for

50 epochs or until no further improvement in model accuracy

was detected. After training, feature computation time per

image was 1.9 ms. Training the random forest used in the final

classification task took no more than 4.86 s for worst case

scenario (i.e. including all possible features). After training,

in the worst case scenario (i.e. including all features), the

classifier took an average of 0.14 s per patient to compute

the final prediction.

III. RESULTS

In a first exploration we examined the performance of all

models including all available input features as well as all

possible features in each considered feature subset: structured

data, ontological data, ontological meta data, each individual

image modality and all image derived features. Ten runs of

the training and testing steps were performed and the corre-

sponding test-time classification/recommendation performance

indicators computed. The average results are presented in

table III using the usual classification performance indicators

Accuracy, Precision, Recall and F1 Score.

Ontological data and meta-data enable an accuracy that is

in the same performance tier as image derived features. It can

be observed that ontological information compression in the
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TABLE IV
TOP-TEN FEATURES IN DECREASING ORDER OF IMPORTANCE; VA –
VISUAL ACUITY, OCT – OPTICAL COHERENCE TOMOGRAPHY, AS –

ANTERIOR SEGMENT SLIT LAMP PHOTOGRAPH, RF – RED-FREE SLO
IMAGE, IR – INFRA-RED SLO IMAGE, AF – AUTOFLUORESCENCE SLO

IMAGE; THE NUMBERS AFTER THE TERMS OCT, RF, AF AND IR
REPRESENT THE INDEX OF A GIVEN FEATURE IN THE 128 FEATURE

VECTOR GENERATED BY REPRESENTATION LEARNING

Feature Subset

Global Image Ontological

1 - Ofloxacin
2 - VA testing
3 - RF 104
4 - RF 19
5 - Tonometry
Ofloxacin
6 - RF 95
7 - RF 98
8 - AS 21
9 - AS 91
10 - OCT 109

1 - RF 104
2 - RF 19
3 - RF 95
4 - RF 98
5 - AS 21
6 - AS 91
7 - OCT 109
8 - RF 49
9 - RF 113
10 - IR 42

1 - Ofloxacin
2 - VA testing
3 - Tonometry/Ofloxacin
4 - Pseudophakia
5 - Diabetes Mellitus II
6 - Moxifloxacin
7 - Photocoagulation of the Retina
8 - Mechanical Vitrectomy
9 - Levofloxacin
10 - Posterior Segment
Fluorescein Angiography

form of ontological meta-features does not impact any of the

models performance indices, yielding exactly the same aver-

age performance. Concerning precision, surprisingly, features

derived from most image modalities lead to slightly inferior

results than those obtained using either ontological data or

all non-image data. This effect was not present for the case

of the accuracies, where image-related information provided

better results than non-image data. It is well known that a

previous feature selection should be done when dealing with

high dimensional datasets. To rank features by classification

usefulness, for each subset we trained a decision tree and

rated each input feature’s importance according to its depth in

the constructed decision graph [12]. The top ten features for

each subset are presented in table IV ordered by decreasing

usefulness.

Building upon the previous experiment we decided to

research the influence of feature partition into the several

subsets described before on the maximum attainable classifi-

cation/recommendation performance. Several classifiers were

trained using first all data features, then only the non medi-

cal features (image and demographical data), the ontological

features and also only image-related features. In all cases

we recorded the number of features used in the classifier

that reached the highest performance. The results of this

experiment are presented in table V organized per feature

subset where in the second column the performance indicators

are listed accompanied by the number of features for the

maximum performance classifier.

It can be concluded that a relatively large number of the

entire set of input features are needed for maximum model

accuracy. For instance 504 of all the global features are

needed to reach an accuracy of 0.89. For the non medical

and image subsets only 2 features are needed to achieve

a model precision of 0.93 for both instances. It is also

noticeable that the proposed model can reach a maximum

accuracy of 0.89 using a subset of features chosen from all

available clinical information and 0.88 on a subset of features

TABLE V
MAXIMUM MODEL PERFORMANCE VALUES; VALUES IN PARENTHESIS

REPRESENT THE NUMBER OF FEATURES INCORPORATED IN THE MODEL

THAT REACHED THE SPECIFIED PERFORMANCE

Feature Subset Performance

All (n=1020)

Accuracy (%) 89 (504)

F1 Score (%) 90 (504)

Precision (%) 90 (504)

Recall (%) 92 (720)

Non medical (n=644)

Accuracy (%) 88 (278)

F1 Score (%) 89 (452)

Precision (%) 93 (2)

Recall (%) 90 (379)

Ontological (n=124)

Accuracy (%) 82 (113)

F1 Score (%) 84 (113)

Precision (%) 86 (107)

Recall (%) 88 (2)

Image (n=640)

Accuracy (%) 87 (174)

F1 Score (%) 88 (542)

Precision (%) 93 (2)

Recall (%) 90 (354)

constructed without medical information input. These numbers

show that combining features does not always lead to better

performance indicators and that non medical data alone can

provide performance similar to that obtained based on the

image data.

IV. DISCUSSION

Computer aided diagnostic and recommendation systems

leveraging the different types of input information in an

integrated fashion will become an increasingly important asset

in daily clinical practice. Such systems will be able to integrate

clinical information at a scale beyond the abilities of any clini-

cian and after careful validation they will provide an objective

clinical opinion. Clinical validation presupposes that the inner

workings of a proposed CAD system must be amenable to

scrutiny by clinicians not only to attest its validity but also

to troubleshoot possible failures. We explored the possibilities

afforded by a multimodal dataset in the construction of an

integrated ’white box’ modeling algorithm for clinical event

prediction in ophthalmology. Preprocessing allowed us to

represent input data with compact and discriminative feature

vectors amenable to fusion. Models built from different feature

subsets gave us the possibility to probe the significance of

different input features. Medical features were in general the

most important for model accuracy. Ontological meta-features

enabled a model performance that closely matched the one

afforded by non processed ontological features. This shows

that hierarchical feature representation in ontological space

can preserve discriminating ability with regards to the original

input data. We expected anterior segment photographs to be

the most informative for cataract diagnosis but in our model

posterior segment RF SLO imaging derived features carried

the higher discriminative ability. Our interpretation is twofold.

On one hand slit lamp photograph is not as standardized

making the construction of a compact discriminative feature

set more challenging. On the other hand SLO RF imaging

of the eye fundus can provide a more standardized image set

that can indirectly provide information concerning the optical

attenuation properties of the lens.
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With regards to ontological features, since in clinical practice

all invasive ophthalmic procedures are preceded by the topical

administration of an antibiotic (in the this case ofloxacin)

which is recorded in the clinical annotations, the association

between ofloxacin-related features and procedure recommen-

dation was expected. Visual acuity testing is also a procedure

that can carry significant diagnostic and prognostic implica-

tions for procedure recommendations and as such its high pre-

dictive impact was expected. It is common knowledge among

ophthalmologists that diabetes accelerates the progression of

cataract disease, that retinal photocoagulation is a procedure

performed in patients with advanced diabetic retinopathy and

that fluorescein angiography is a critical exam in the evaluation

of advanced diabetic retinopathy. These observations show that

the decision model operation reflects the feature importance

reported in Table IV and is amenable to rational explanation

and in line with common clinical knowledge. With refer-

ence to feature selection for model performance optimization

two major categories of interpretations can be drawn from

the data: feature subset influence in global performance and

number of features required for maximum model performance

– information compression and relevance. It was concluded

that a relatively large amount of input features is needed to

ensure maximum model accuracy. While clinical diagnosis

of cataract is straightforward from anterior segment obser-

vation at the slit lamp, a pondered recommendation taking

into consideration the potential visual impact of the disease

and the prognosis of an eventual surgical intervention can

only be made with access to information of the posterior

segment. In all cases a careful evaluation of all considered

image modalities is required for adequate surgical planning

and prognosis implications. These observations can be relevant

for data management in clinical environments as they show

than not all data is equally important for a given clinical

decision. Relevant image modalities can be stored in higher

resolution lossless formats and made immediately available

for consultation while less relevant formats can be available

in compressed form or represented only by descriptive feature.

Also if careful feature selection is implemented, considering

specific needs, computational requirements can be lighter,

allowing portable implementations for use in remote areas.

V. CONCLUSION

Selective combination of multimodal EHR data in an inte-

grated model can provide good accuracies in the recommen-

dation of cataract surgery, one of the most commonly per-

formed ophthalmic procedures. Our study reveals that clinical

annotations in the form of ontological encodings are the most

relevant features regarding clinical event prediction accuracy.

Furthermore we show that ontological encodings of clinical

annotations and ontological meta-features are effective in the

representation of medical knowledge. The experiments show

that a convolutional deep learning architecture can be used

to extract sparse representations of input image data in an

automated end-to-end approach enabling practical effective

multimodal image fusion. It is also demonstrated that the

proposed solution can be fine tuned by exploring the relative

impact of each feature subset in the model’s performance. We

also showed that the use of random forests provides a way

to implement a recommendation system which is not opaque

enabling some understanding of the processing steps that lead

to final decision formulation. This enables auditability and

internal understanding by experienced clinicians. Taking into

consideration practical usefulness, performance, computational

requirements, computation times, modularity and auditability

of the proposed system we believe that it can be used for real

time CAD and decision support in ophthalmology.
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