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Abstract—Denoising algorithms via sparse representation are
among the state-of-the art for 2D image restoration. In this
work, we propose a novel sparse and prior-based algorithm
for 3D image denoising (SPADE). SPADE is a modification of
total variation (TV) problem with an additional functional that
promotes sparsity with respect to a prior image. The prior
is obtained from the noisy image by combining information
from neighbor slices. The functional is minimized using the
split Bregman method, which leads to an efficient method for
large scale 3D denoising, with computational cost given by three
FFT per iteration. SPADE is compared to TV and dictionary
learning on the Shepp-Logan phantom and on human knee
data acquired on a spectral computerized tomography scanner.
SPADE converges in approximately ten iterations and provides
comparable or better results than the other methods. In addition,
the exploitation of the prior image avoids the patchy, cartoon-like
images provided by TV and provides a more natural texture.

Index Terms—image denoising, total variation, split Bregman,
spectral CT

I. INTRODUCTION

Sparse methods are among the state-of-the art denoising
methods. Total variation (TV) preserves edges and was termed
as a ”proper norm” for images [1]. Other L1-norm methods
exploited sparsity using wavelet transform or frames and
also provided competitive results [2]. However, TV leads to
the so called ”staircase artefacts” when images are highly
corrupted by noise. To mitigate these effects generalizations
of TV, such as total generalized variation [3] and nonlocal
TV [4], were proposed. Similarly to nonlocal TV, patch-
based [5] and dictionary learning (DL) [6] methods exploit
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redundancy across patches at different locations on the image.
This adds an extra dimension along which images have a
sparser representation.

Exploiting sparsity in a high dimensional space is common
in compressed sensing applications where data redundancy is
present along temporal or other higher dimensions [7], [8], [9].
In these applications, prior-based methods exploit sparsity by
subtracting the unknown image to a prior image that is built
from data in the high dimensional space. When restricted to
2D or 3D, the best is to use patch-based or similar strategies,
such as dictionary learning or collaborative filtering [10].

The goal of this work is to present a new paradigm to exploit
sparsity in 3D and, in specific, to propose a novel sparse
and prior-based algorithm for 3D image denoising (SPADE),
with the additional benefit of being computationally efficient
for application to experimental clinical images. SPADE mini-
mizes both a TV functional and an additional functional that
promotes sparsity with respect to a prior image. The prior is
obtained from the noisy image by combining information from
neighbor slices. In this study, we used a running average to
provide a specific prior image for each slice. The functional
is minimized using the split Bregman method, which is
an efficient method for L1-norm problems [11]. SPADE is
compared to TV and to DL method. The comparison with
TV shows the improvement of adding the proposed prior-
based regularization functional to a given algorithm. Although
the DL method is a 2D-denoising algorithm, it allows to
compare the recovery of image texture with a more complex
algorithm than TV. Methods are assessed on Shepp-Logan
phantom and on human knee experimental data acquired on
a spectral computerized tomography (SCT) scanner. SCT is
a new imaging modality with the potential of improving
conventional CT but reconstructed images are affected by
noise [12], [13], [14]. In particular, we are interested in using
SCT for knee osteoarthritis, as SCT may provide sufficient
soft-tissue contrast to visualize and quantify cartilage tissue.
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Quantification requires image segmentation and improvement
in image quality is thus essential.

II. METHODS

A. TV denoising

Let ũ be the 3D noisy image and u the 3D denoised image,
the constrained total variation denoising problem is posed as
follows:

min
u
‖∇u‖1 such that ‖u− ũ‖22 ≤ σ2, (1)

where the first term is 3D TV functional and the second term
constrains the denoised image to lie close to the noisy image.
We assume that noise follows a Gaussian distribution.

The TV functional is nonlinear and nondifferentiable, so it
requires stable and efficient iterative algorithms. It is common
to approximate TV functional but this can lead to slow
convergence or non optimal results [15]. The split Bregman
method provides a framework for efficient minimization of
convex nondifferentiable functional [11] (see section II-C).
Relations between split Bregman and other splitting techniques
have been shown [16].

B. SPADE denoising

SPADE imposes both spatial regularization and sparsity
with respect to a prior image by solving the following problem:

min
u

(1− α)‖Ψu‖1 + α‖Φ(u− up)‖1

such that ‖u− ũ‖22 ≤ σ2, (2)

where up is a prior image that is assumed to be known.
Operators Ψ and Φ are chosen to be equal to ∇ in order to
compare to TV denoising and for computational purposes, as
described in section II-C. With this choice, SPADE minimizes
a combination of TV (u) and TV(u− up).

The prior image should be a good estimate of the unknown
image in most but not in all pixels and should have low noise.
In this study, the prior is obtained by combining information
from neighbor slices by using a running average to provide a
specific prior image for each slice, that is, up = (u1p, . . . , u

N
p ),

where uip represents the ith slice and N is the number of slices
along the z-dimension in the image. Each prior slice uip is built
from the 3D noisy image ũ as follows

uip =
∑
j

βij ũj , (3)

where βij = exp(−γ|j − i|), j = 1, . . . , N is the index of
the slice, and γ = 0.04, which was set empirically in order to
provide slow decaying coefficients. The prior image, which is
a low-pass filtered version of the noisy image, has low noise
but it is obviously blurred.

This methodology provides an easy way to exploit structure
similarity across slices. The further away from the current
slice the lower the similarity. Thus, we propose a stack
based denoising approach where a given number of slices are
denoised at each time. We used stack of ten slices (N = 10).

C. Split Bregman formulation to solve SPADE and TV prob-
lems

We implemented SPADE and TV methods using the Split
Bregman method, which is an efficient method for L1-
regularization problems [11], [17], [7]. The nondifferentiability
of TV is handled by introducing 3D auxiliary variables di and
ei, i = x, y, z, such that problem (2) becomes

arg min
u,di,ei

(1− α)‖(ex, ey, ez)‖1 + α‖(dx, dy, dz)‖1

such that ‖u− ũ‖22 ≤ σ2, di = ∇i(u− up),

ei = ∇iu, i = x, y, z, (4)

adopting isotropic TV [11]. Constrained problem (4) is eas-
ily managed using an iterative regularization scheme where
constraints are imposed by adding Bregman iterations bi, ci:

(uk+1, dk+1
i , ek+1

i ) = arg min
u,di,ei

α‖(dx, dy, dz)‖1+

(1− α)‖(ex, ey, ez)‖1 +
µ

2
‖u− ũk‖22 +

∑
i

λ

2
‖di−

∇i(u− up)− bi‖22 +
∑
i

λ

2
‖ei −∇iu− ci‖22, (5a)

ũk+1 = ũk + ũ− uk+1, (5b)

bk+1
i = bki +∇i(u

k+1 − up)− dk+1
i (5c)

ck+1
i = cki +∇iu

k+1 − ek+1
i (5d)

Variables u, di, and ei are decoupled so they can be solved
in alternating steps. Solution of u that leads to a linear
system is efficiently solved in the Fourier domain and auxiliary
variables are solved using shrinkage formulas. This leads to
an efficient method for large scale 3D denoising, with com-
putational cost given by three FFT per iteration. In addition,
it can be parallelized across stacks, which provides additional
computational efficiency. We remark that the linear system
can be solved in the Fourier domain as Φ′Φ and Ψ′Ψ have
Fourier representation. Other choices for Φ or Ψ that meet this
criterion are unitary operators such as the wavelet transform.
A previous work proposed a Gauss-Seidel method for efficient
resolution of the linear system for a banded Hessian matrix
that arises in a Bregmanized nonlocal TV formulation [4].

For methods hyperparameters, we used µ = λ = 1 for
both TV and SPADE. This parameter selection does not affect
convergence, only convergence speed (see [11], [17], [18] for
further details). The effect of α is analyzed in section III-A.

D. Dictionary learning denoising
For the DL method [6] we used the KSVD toolbox down-

loaded from https://elad.cs.technion.ac.il/software/ with the
following parameters: block size b = 8, redundancy factor
R = 4, number of atoms in the dictionary Rb2, estimate of
noise SD σ and ten KSVD iterations. Number of iterations
could be made smaller to accelerate convergence but did not
affect results. We checked varying parameter σ in the range
from 5 to 20 and present best results. We remark that while
TV and SPADE are 3D-denoising methods, the DL code used
is a 2D-denoising method.
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E. Methods analysis and image evaluation

The proposed method SPADE (2) is a modification of TV, so
convergence and solution error at different iteration numbers
are shown for both methods. Then, SPADE, TV and DL
methods are compared in terms of mean-squared error (MSE)
with respect to the ground truth image, streak artefact measure
(SAM), and noise. SAM is the total variation of the denoised
image subtracted to the ground truth image, so it provides an
estimate of how well edges are recovered [7]. SAM accounts
for noise, artefacts and texture recovery. Noise is computed as
the standard deviation (SD) on a small homogeneous region.
As DL is a 2D method, we also provide metrics for TV method
in 2D (TV-2D), for comparison.

F. Data sets

Methods were tested on a numerical phantom and exper-
imental data (figure 1). The phantom was built from the
Shepp-Logan phantom where a slice was replicated along z-
dimension and 5% additive Gaussian noise was added. Experi-
mental data consisted of a excised human knee image acquired
at Philips prototype SCT scanner, at CERMEP, Lyon [19].
Knee sample was taken from the Institut d’Anatomie Paris
Descartes and provided by B2OA (Bioingénierie et Bioim-
agerie ostéo-articulaire) CNRS 7052, Paris Diderot University.
The study was approved by the ethics committee of Descartes
University, Paris. Two levels of noise were considered: the
original image and a second noisier data set with 5% additive
Gaussian noise. For the latter the image provided by the
scanner was adopted as ground truth. Images were 640× 640
pixels and we worked with one stack of 10 slices.

Fig. 1. Left: Slice of Shepp-Logan phantom. Right: Slice of experimental
SCT image of human knee.

III. RESULTS

A. Shepp-Logan phantom

SPADE is first analyzed in comparison to TV method on the
Shepp-Logan phantom. Figure 2 shows solution error norm
versus the number of iterations for TV and for SPADE for
different values of α. Both methods converged in less than
10 iterations. SPADE presented lowest errors and more stable
convergence for intermediate values of α (0.2 ≤ α ≤ 0.4);
solution error was 34% lower than TV error. Very low or
large values of α resulted more unstable. We emphasize that
TV becomes unstable after few iterations because of high

TABLE I
METRICS FOR SHEPP-LOGAN PHANTOM (LEFT) AND KNEE DATA (RIGHT).

MSE % SAM SD MSE % SAM SD

TV 6.5 4.1 0.010 6.7 2.7 45.2
SPADE 4.3 3.8 0.011 6.4 2.7 57.4
Prior 4.4 5.8 0.016 8.3 3.3 68.7
DL 4.8 3.2 0.008 6.8 2.7 48.0
TV-2D 8.9 6.3 0.017 7.6 3.0 57.0

noise. The divergence of TV is explained by the fact that the
Bregman iteration converges to the noisy image for a large
iteration number but it constructs a sequence of solutions that
monotonically get closer to the true noise-free image [11]. On
the other hand, SPADE had smoother convergence for a wide
range of values of α, so the prior stabilizes the convergence.
From now onwards we use α = 0.4.

Fig. 2. Solution error norm versus the iteration number for TV and SPADE
for different values of α.

Figure 3 shows denoised images by TV and SPADE for
different number of Bregman iterations k and the prior image
used by SPADE. TV presented the lowest MSE for k = 3 but
edges were not well recovered. Higher number of iterations
allowed to recover edges at the expense of noise and ”staircase
artefacts”. SPADE had the lowest MSE for k = 16, for which
most edges were recovered. Increasing the iteration number
recovered edges without detrimental noise.

DL reduced noise considerably but it did not recover edges
as efficiently as SPADE and presented less natural texture.
Best results for DL were obtained for 10 ≤ σ ≤ 12, where 10
provided sharper objects but also more artefacts, and 12 led to
larger noise reduction but blurred edges. Using the simulated
noise SD, (σ = 12.75 for gray-level scale images), would have
led to a excessively blurred image.

Table I (left) presents MSE, SAM and noise for TV (k = 3),
SPADE (k = 16), prior image used by SPADE, TV-2D (k = 3)
and DL (10 iterations, σ = 12). SPADE led to the lowest MSE
among all methods and DL led to the lowest noise and SAM.
SPADE improved all metrics with respect to TV except to
noise, which was similar.

2019 27th European Signal Processing Conference (EUSIPCO)



Fig. 3. a) Detail of Shepp-Logan image, b) noisy image with 5% Gaussian
noise, and denoised images by c-d) TV, e-f) SPADE for α = 0.4, and h-i)
DL. g) Prior image used by SPADE.

B. Experimental data

Figure 4 shows denoised images for the knee experimental
data set with higher noise (5% additive Gaussian noise).
TV and DL were quite efficient in removing noise but they
presented less natural image texture than SPADE, which
recovery is guided by the prior image. Denoised images at
different iteration numbers for TV and SPADE show that
SPADE presented more robust convergence than TV, where
solutions with lowest MSE for TV and SPADE were for k = 5
and k = 23, respectively. For k = 15, SPADE has suppressed
noise and recovered most features, and for k = 23 it recovered
all bone details, which can be appreciated on the bottom part of
the image. A large iteration number (k = 30) led to moderate
increase of noise in comparison with TV and without TV-like
artefacts. DL presented lowest error for σ = 12; it provided
better image quality than TV but it contained a large number of
artefacts. Overall, SPADE presented best trade-off, being quite
effective in removing noise while maintaining good image
quality and a natural texture.

Table I (right) shows MSE, SAM and noise metrics for
knee data. SPADE led to lower reduction in MSE than other
methods. TV and DL provided the largest noise reduction but
all methods presented similar SAM, as it accounts for both
noise and artefacts.

Codes were run on a Windows computer with a 64-bit op-
erating system, Intel Xeon(R) E5-1650 v4 3.60 GHz CPU and
128 GB RAM. We provide in table II algorithm computation
times with codes ran in MATLAB. We also give the average
time per iteration as most codes can be tuned to achieve
faster convergence. Time for denoising the whole volume was
computed only for SPADE; times for other methods were

Fig. 4. Detail of a) original image, b) noisy image with 5% Gaussian noise,
and denoised images by c-d) TV, f-h) SPADE and i-j) DL. e) Prior image
used by SPADE.

TABLE II
COMPUTATION TIME FOR THE KNEE DATA.

Iteration (s) Slice (s) Volume (min)

TV 0.05 0.4 2
SPADE 0.08 1.1 5.2
DL 2.4 29 192

extrapolated. Computation times for SPADE can be further
reduced by parallelization and exploiting GPU, as heaviest
computation time is the FFT.

Figure 5 shows denoising of the original image provided
by the spectral CT scanner (figure 4-a), which has lower
noise than previous data set (figure 4-b). SPADE improved
image quality both in terms of reduced noise and increased
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tissue contrast. Cartilage tissue is clearly seen and better
delineated than in the original image, which is the goal for
the medical application. Images are shown at two different
iteration numbers. We can see that SPADE already provides
high quality image after 10 iterations and larger number of
iterations are needed to recover all fine details.

Fig. 5. Denoising of experimental knee image (figure 4-a) by SPADE for
k = 10 (left) and k = 50 iterations (right).

IV. DISCUSSION AND CONCLUSION

We have presented a new methodology for 3D image
denoising, in specific, we proposed SPADE method and com-
pared it to TV and DL methods. Results show that adding
a prior-based functional avoids artefacts that appeared in TV
and provides a more natural image texture than TV and DL
methods. We note that while the prior image is not actually set
a priori, as it is learned from the data, it guides the denoising
algorithm to reduce noise and maintain texture. In addition, the
prior makes SPADE to be more robust to the iteration number
than TV method, where both methods were solved using the
split Bregman formulation [7], [11], [20].

SPADE also provided competitive results in terms of com-
putation time, allowing to denoise the whole volume in few
minutes. We found that a higher iteration number led to
improved results for the less noisy data. We remark that
SPADE can further benefit from GPU implementation and that
the possibility of processing the 3D volume in stacks allows
for further parallelization.

This work is subject to few limitations. The comparison
of SPADE, which is intrinsically a 3D-denoising method,
to DL is not fair, as DL is a 2D-denoising method. How-
ever, we showed the improvement of adding a prior-based
regularization functional to TV method, so we could expect
similar improvement by applying this approach to DL or other
methods such as total generalized variation. In addition, the
use of DL for 3D images should be time consuming which
could be a severe restriction for clinical applications. With
regard to the Shepp-Logan phantom, it was built from a 2D
slice, which makes it an ideal situation for the prior image as
it is less blurred than in practice. On the contrary, results on
knee data show the feasibility of the proposed methodology
on clinical data. Future work will contemplate comparison to
other algoritms such as the collaborative filtering method [10]
and deep learning base strategies [21].

Several generalizations of the proposed method can be
designed. For instance, one may think of more general trans-
forms that combine neighbor slices. This work has focussed

on denoising of reconstructed spectral CT images instead
of addressing the tomographic problem. This is of major
interest because in most applications raw data are usually not
available in CT and spectral CT. Nevertheless, another possible
extension of this work is to incorporate the proposed prior-
based regularization strategy into the tomographic step.

In conclusion, we have presented a new paradigm for 3D
image denoising that allows to exploit sparsity in a easy and
efficient manner. From the results shown on experimental data,
we expect SPADE to be widely used for 3D image processing.
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