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Abstract—Robust feature compensation and selection are im-
portant aspects of noisy speech emotion recognition (SER) task,
especially in mismatched condition, when the models are trained
on clean speech and tested in the noisy scenarios. Here we
propose the use of front-end feature compensation techniques
based on Vector Taylor Series (VTS) expansion and VTS with
auditory masking (VTS-AM) to improve the performance of
SER systems. On top of VTS and VTS-AM, we compare the
performances of log-compression and root-compression to the
mel-filter-bank energies. Further, we demonstrate the benefit of
feature selection applied to the non-MFCC high-level descriptors
in conjunction with VTS, VTS-AM and root compression. The
system performance is compared with popular Non-negative
Matrix Factorization (NMF) based enhancement and energy
based voice activity detector (VAD) technique, which discards
silence or noisy frames in the spoken utterances. To demonstrate
the efficacy of our proposed techniques, extensive experiments
are conducted on 2 standard datasets (EmoDB and IEMOCAP),
contaminated with 5 types of noise (Babble, F-16, Factory, Volvo,
and HF-channel) from the Noisex-92 noise database at 5 SNR
levels (0dB, 5dB, 10dB, 15dB and 20dB).
Index Terms: Emotion recognition, Noisy speech, Feature
compensation, Auditory masking, Vector Taylor Series

I. INTRODUCTION

Emotion recognition in noisy speech faces exponential
challenges, mainly because of the corrupted acoustic cues
[1]–[4]. Systems restricted to use speech samples recorded in
controlled environments cannot be used for realistic speech
emotion recognition task.

In literature, to deal with noise in emotional speech, tech-
niques like enhancing speech signals, eliminating noise, adapt-
ing models, compensating features and deriving robust set of
acoustic features have been explored. For example, histogram
equalization to reduce the difference between features vectors
in clean and noisy conditions have been proposed in [5]. In
[1], [6], authors used Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA) and their combinations
for different types of noises. In [7], Fisher rate to PCA for
dimension reduction have been used with an ANN classifier.
Authors in [2], extracted 4k acoustic features, reduced them
further by fast Information-Gain-Ratio (IGR) filter-selection
according to different types of noise, and finally classified
using a SVM classifier. In [8], authors show how emotion
recognition performances are affected by word- or turn-based
features with different noise addition and microphone position.

In [9], authors used spectral subtraction along with masking
for speech enhancement in white noise contamination. Work

in [3], [4], proposed to use a front-end signal processing for
discarding noise affected non-speech frames using VAD.

In this paper, we propose a front-end that extracts multiple
low-level features, a portion of which is compensated at low-
level itself, followed by a high-level (i.e. statistical) feature
extraction and then a subsequent noise-robust feature selection.
As feature compensation, we propose to use Vector Taylor
Series (VTS) expansions and compare its performance with
and without psychoacoustic corruption function (VTS-AM).
Both VTS and VTS-AM methods are used to compensate a
Gaussian mixture model (GMM) trained on clean speech. Then
Minimum Mean Square Errors (MMSE) are used to estimate
the clean speech features from noisy speech features. Further,
we have compared the performance of log or root-compression
to the mel-filter bank energies. We also show that applying
feature selection on the non-MFCC high level descriptors,
along with the VTS and VTS-AM techniques, provides a small
but consistent performance gain.

Although, different feature compensation and model adap-
tation techniques have been used in noisy speech emotion
recognition task (e.g. [5], [9], [10]), the methods used in
this paper, such as VTS, VTS-AM and root compression
have never been used for speech emotion recognition task.
While VTS and VTS-AM have been shown to be effective in
speech recognition tasks [11], their applicability, so far, has
not been shown in speech emotion recognition. Moreover, to
find the effectiveness of our proposed system in more realistic
conditions, we choose to experiment in mismatched scenarios,
i.e. clean-training and noisy-testing. We also compare the per-
formance of our proposed techniques with previous works [3],
[4], [12], and to make the comparisons fair, we replicate the
results of our previously proposed techniques in mismatched
scenario. Experiments with two different databases and with
5 different types of noises, each at 5 different levels, show
that the proposed systems performed significantly better than
the other systems in the literature. It should be mentioned
that we have not investigated the Lombard effect in this work.
However, the proposed methods should work to counter the
degradation caused by additive noise.

The rest of the paper is organized as follows. Section II
presents emotion recognition system, along with our proposed
feature compensation and selection technique. In section III,
we explain the experimental setup, databases, results, and
analysis. Conclusion is given in section IV.
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Fig. 1. Front-end feature compensation and selection modules for noisy SER.

II. FEATURE COMPENSATION FOR NOISY SPEECH EMOTION
RECOGNITION

Proposed emotion recognition system for noisy speech is
depicted in Figure 1, which consists of a feature extraction
at the front end, followed by a conventional classifier. We
propose the feature compensation and selection within the
feature extraction module to deal with the noisy speech.

Let us denote s be the noisy speech. Overall feature extrac-
tion process is defined by,

Υ = φj
{
fi(s)

}J,N
j=1,i=1

(1)

where fi and φj are the low-level and the high-level feature
extraction functionals. N and J are total number of low and
high level functionals respectively. In this work, the main
objective is to compensate and select noise robust features
at different stages of the feature extraction module. Therefore,
we, essentially, rewrite Equation 1 as,

Υ =
{
φj{ψ(f1(s))}, φ̂j{fi(s)}

}J,N
j=1,i=2

(2)

where ψ is the compensation functional which give compen-
sated version of MFCC features (f1). fi are the non-MFCC
feature extraction functionals. φ and φ̂ are the high-level and
selected high-level features, respectively.

A. Feature compensation

In this paper, we propose to use the Vector Taylor Series
(VTS) expansion and the VTS with psychoacoustic corruption
function as the feature compensation, which are then used
to compensate Gaussian mixture model (GMM) trained with
the clean speech. Traditional assumption of noise corruption
model is that the speech and noise are additive in the spectral
magnitude domain. While compensating through VTS expan-
sion [11], [13], non-linear function in cepstral domain can be
represented as,

ys = xs + hs + Clog(1 + exp(C−1(ns − xs − hs))) (3)

where C and C−1 are the DCT matrix and it’s inverse respec-
tively. On the other hand, ~y, ~x, ~h and ~n are the Mel Frequency
Cepstral Co-efficients (MFCC) domain distorted speech, clean
speech, channel factor, and additive noise parameters. But,
according to psychoacoustic corruption model [14], only the
portion of noise which is above the masking threshold of clean
speech is added to the speech. The psychoacoustic corruption
function (as described in [15]), is used to modify the Equation
3 by incorporating the auditory masking criteria (i.e. VTS-
AM), as the following,

ys = xs +hs +ws +Clog(1+exp(C−1(ns−xs−hs−ws)))
(4)

where ~w is the scaling factor, which depends on the masking
threshold of clean speech. Compensated model parameters can
be computed by following similar methods as described in
[13], [16]. The modified Taylor series component G which is
the Jacobian of the mismatch function is defined as:

G = C.diag

(
1

1 + exp(C−1( ~µn − ~µx − ~w − ~h))

)
.C−1

(5)
where the component G is derived using only the static portion
of model mean and noise mean. Next, we compensate the
model mean and variance as follows:

~µy = ~µx+~h+ ~w+Clog(1+exp(C−1( ~µn−~µx− ~w−~h))) (6)

and

Σy ≈ GΣxG
T + (I − G)Σn(I − G)T (7)

where I and T are the identity matrix and transpose respec-
tively. ~µy and Σy are the compensated mean and variance.
In this approach, a GMM is trained on the clean speech
denoted as λx = {~µx, ~σx, ~w}. Next, the GMM parameters
(mean and variance) are compensated according to the method
described in [11]. Let the compensated model be denoted as
λy = {~µy, ~σy, ~w}. The pseudo-clean features ~xMMSE are
estimated from the noisy observations as [17]:

~xMMSE = ~o−
M−1∑
m=0

p(~o|λym)(~µym − ~µxm) (8)

where ~o is the noisy speech features. p(~o|λym) is the posterior
probability for the mth Gaussian mixture component of the
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Fig. 2. Mean recognition accuracy (%) for different systems for (a) EmoDB (b) IEMOCAP. No Comp: no compensation, Ψ1: log-MFCC + VTS, Ψ2:
log-MFCC + VTS-AM, Ψ3: 10th root-MFCC + VTS-AM, f : without feature selection, f̃ :(non-MFCC) feature selection

noise compensated GMM against the observation ~o. ~µym is
the mth component of the noise compensated GMM and ~µxm

is the mth component of the clean GMM.
1) Log and root compression: In MFCC feature computa-

tion, use of log-compression on the mel-filter bank energies
has been the practice. The purpose of applying logarithm is
to reduce the dynamic range of the feature and also to make
data less sensitive towards variability [11], [18]. However, root
compression is the other alternatives for reducing dynamic
range of the mel-filter bank features. The benefit of logarithmic
function is that channel effect can be discarded through cep-
stral mean and variance normalization, which is not possible
for root compression. On the other hand, root compression
exhibits superior noise robustness, which might yield better
compaction of the spectral energy than other compression
techniques.

2) High-level audio descriptors and feature selection: In
the next stage of feature extraction process, we extract high-
level descriptors (i.e. statistical functionals) from all low-level
extracted features. Since the compensation is followed for
MFCC features only, we have used a robust feature selection
algorithm (for other low-level descriptors) that selects the
relevant features in diverse noise conditions.

We used Information Gain Ratio based feature selection
(IGR-FS) for feature reduction, where highly relevant at-
tributes are found by their entropy, and ranking of attributes
is independent of the classifier [2]. We also tried correlation
based feature selection (CFS) [19]. But, better performances
were observed for IGR-FS than the CFS-based feature selec-
tion, and the former one is computationally faster as well. It is
to be noted that IGR-FS on non-compensated (i.e. non-MFCC)
features was found to give the best performance.

III. EXPERIMENTS

A. Database and experimental set-up

We experimented with 2 standard emotional databases,
namely (1) Berlin emotional database (EmoDB) [20], [21]
and (2) Interactive emotional dyadic motion capture database
(IEMOCAP) [22], [23], which were contaminated by noise

to test our proposed techniques. Emo-DB consists of 535
utterances, where 10 professional actors participated to act
for 7 emotions. IEMOCAP is having 12 hours of audiovisual
data, based on improvised and scripted interactions between
5 pairs of male-female participants. We have taken 5 types
of noise (Voice babble,Factory noise,HF radio channel, F-16
fighter jets, and Volvo 340) from Noisex-92 database to corrupt
the clean speech [24]. FANT toolkit is used for contamination
of noise to clean speech at 5 SNR levels (0dB ,5dB, 10dB,
15dB, and 20dB) [25].

In all our experiments, we extracted 6 types of LLDs (frame-
length of 20 ms and frame-shift of 10 ms), namely, log-
energies, voice probability, frequency-band energies, F0, ZCR,
and MFCC. Moreover, we took 39 statistical functionals (up
to fourth order) for all the LLDs. We have used openSMILE
toolkit for extracting acoustic features other than the MFCCs
[26]. 23 dimensional MFCC features (with ∆ and ∆∆)
were extracted for feature compensation using Kaldi speech
recognition toolkit [27]. Noisy features are compensated using
VTS and VTS-AM, and then transformed from the MFCC
domain to mel-filter bank domain. Next, we apply log and
10th root compression on the VTS compensated features. We
use 10th root since it has been mentioned in [11] that 10th

root provides best performance compared to other roots. It
should be noted that all methods compared are unsupervised
methods and hence a separate development set is not required
for parameter tuning.

B. Results and Analysis

All our experiments have been conducted on clean-training
and noisy-testing, which is a mismatched scenario. For all our
experimentations, we followed 5 cross-validation (CV) setup,
by splitting up the dataset into 5 sets (80%-20% for train-
test), and following leave one noisy set out for testing in each
validation. Mean of recognition accuracies (RA in %) over all
the SNR levels for each type of noises are shown in Figure
2 for both the databases. It is clear from the performance
plot that we always get substantial improvements by just
using either the VTS or the VTS-AM compensation techniques
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TABLE I
CATEGORICAL EMOTION RA (IN %) (5 TYPES OF NOISE WITH 5 SNR LEVELS) FOR DIFFERENT SYSTEMS: NO COMP: NO COMPENSATION, Ψ1:

LOG-MFCC + VTS, Ψ2: LOG-MFCC + VTS-AM, Ψ3: 10th ROOT-MFCC + VTS-AM, f̃ : (NON-MFCC) FEATURE SELECTION

EMODB IEMOCAP

SNR No Comp. NMF NMF+VAD Ψ1 + f̃ Ψ2 + f̃ Ψ3 + f̃ No Comp. NMF NMF+VAD Ψ1 + f̃ Ψ2 + f̃ Ψ3 + f̃

Babble

0dB 20.9 21.54 23.13 23.12 35.45 37.45 20.18 21.11 23.42 25.97 23.32 27.91

5dB 22.3 23.09 25.26 37.01 44.54 46.72 22.07 22.21 20.13 28.76 29.43 30.41

10dB 24.54 25.81 27.12 47.89 52.71 57.27 30.51 26.32 27.41 29.01 31.34 35.66

15dB 28.18 29.09 33.42 56.63 66.36 69.19 32.46 28.85 28.18 30.66 34.21 37.01

20dB 35.45 37.9 42.13 62.67 70.9 73.68 32.51 33.12 33.52 33.16 35.33 38.16

Mean 24.54 25.81 27.12 47.89 52.71 57.27 30.51 26.32 27.41 29.01 31.34 35.66

F16

0dB 13.63 14.98 18.34 17.12 27.27 32.72 11.68 17.62 16.21 20.92 21.52 23.92

5dB 18.18 19.09 19.32 21.76 30.16 37.27 14.28 19.62 19.23 21.26 22.43 27.76

10dB 20.9 21.11 23.54 34.31 42.72 56.36 16.23 21.32 20.2 25.61 29.76 31.46

15dB 25.45 27.32 30.13 50.98 50.9 58.9 27.27 28.09 29.09 29.92 32.08 34.41

20dB 34.54 35.18 39.13 57.34 59 65.82 27.92 29.11 30.81 30.73 34.52 37.66

Mean 20.9 21.11 23.54 34.31 42.72 56.36 16.23 21.32 20.2 25.61 29.76 31.46

Factory

0dB 12.72 15.11 17.11 29 29.09 36.36 22.72 22.12 23.11 24.18 26.98 29.31

5dB 17.27 19.08 22.35 38.09 44.54 56.36 24.67 25.22 26.01 26.48 28.42 32.52

10dB 21.81 22.87 25.33 48.12 55.45 57.29 25.32 27.09 27.91 29.92 32.41 35.76

15dB 24.54 27.32 29.42 59.96 58.79 62.72 30.51 30.76 31.77 32.67 36.12 38.92

20dB 32.72 39.51 42.84 64.5 63.63 68.59 31.81 31.22 33.06 34.92 40.08 43.92

Mean 21.81 22.87 25.33 48.12 55.45 57.29 25.32 27.09 27.91 29.92 32.41 35.76

HF-channel

0dB 20 23.12 23.32 18.23 40.9 54.12 22.72 23.23 23.87 24.07 30.09 32.57

5dB 21.81 25.33 25.34 28.21 45.45 58.31 30.51 31.21 26.66 27.32 32.31 35.12

10dB 24.54 27.65 28.32 42.23 56.36 60.75 29.22 30.87 30.13 32.26 39.21 47.41

15dB 34.54 37.52 39.63 54.44 65.45 68.43 33.12 37.12 36.12 39.36 45.12 52.12

20dB 48.18 52.21 54.53 62.31 70.9 73.42 34.41 38.21 39.87 45.62 52.32 58.01

Mean 24.54 27.65 28.32 42.23 56.36 60.75 30.51 31.21 30.13 32.26 39.21 47.41

Volvo

0dB 15.54 20.22 21.42 28.09 48.18 56.9 16.23 20.66 26.88 33.67 34.55 36.87

5dB 23.63 27.65 29.34 41.32 53.63 60.36 18.23 27.13 29.81 35.21 36.66 39.41

10dB 37.27 36.13 41.21 55.8 61.81 68.18 23.37 30.42 32.67 35.74 37.89 42.94

15dB 57.27 59.15 62.23 70.32 72.72 74.87 28.57 35.51 37.76 41.18 42.34 49.48

20dB 62.72 67.22 67.23 74.45 74.54 76.21 29.87 38.21 40.32 42.43 44.51 53.83

Mean 37.27 36.13 41.21 55.8 61.81 68.18 23.37 30.42 32.67 35.74 37.89 42.94

(dotted lines in the plot) in comparison with the systems that
use NMF or NMF+VAD. This shows the tremendous potential
of these techniques in speech emotion recognition. It is also
evident that VTS-AM performs much better than VTS and it
follows the trends reported for speech recognition tasks [11]. It
can also be observed that applying feature selection technique
to non-MFCC high-level descriptors on top of the proposed
compensation techniques provides a small but consistent gain
in performance.

Emotion recognition accuracies (RA in %) for the two
datasets and for different techniques are tabulated in Table I.
Due to space constraint we could not include all the techniques
from Figure 2 in this table, but major results are covered. For
Emo-DB, we observed absolute improvements (mean of RA
(in %) across 5 SNR levels) of 2.58 (Babble), 2.64 (F-16), 3.52
(Factory), 3.78 (HF-channel) and 3.94 (Volvo) when NMF-
VAD is used over the baseline (i.e. no compensation). Note
that the performance of NMF-VAD was better than using only

VAD or only NMF as observed in our previous work [3], [4],
and similar trend is found here even for mismatched train-test
scenario (also see Figure 2). While using both feature com-
pensation and selection, overall trend found in terms of per-
formances is: Ψ3 (i.e. 10th root-MFCC+VTS-AM) > Ψ2 (i.e.
log-MFCC+VTS-AM) > Ψ1 (i.e. log-MFCC+VTS) (Table I
and Figure 2). For both compensated and non-compensated
MFCC features, we extract the HLDs. However, best results
are found when feature selection (i.e. f̃ using IGR-FS) is
used for HLDs of non-MFCC features together with feature
compensation. Best absolute improvements (mean of RA (in
%) across 5 SNR levels) of 32.73 (Babble), 35.46 (F-16),
35.48 (Factory), 36.21 (HF-channel) and 30.91 (Volvo) are
observed for Ψ3 (10th root-MFCC+VTS-AM)+f̃ ) over the
baseline. Similarly, absolute improvements (mean of RA (in
%)) of 23.35 (Babble), 13.41 (F-16), 26.31 (Factory), 17.69
(HF-channel) and 18.53 (Volvo) are observed for Ψ1 (log-
MFCC+VTS)+f̃ ) over the baseline. And, absolute improve-
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ments (mean of RA (in %)) are observed as 28.17 (Babble),
21.82 (F-16), 33.64 (Factory), 31.82 (HF-channel) and 24.54
(Volvo) Ψ2 (log-MFCC+VTS-AM)+f̃ ) over the baseline.

Similarly for IEMOCAP database, absolute improvements
(mean of RA (in %)) of 3.97 (F-16), 2.59 (Factory), and
9.32 (Volvo) were observed when NMF-VAD is used over
the baseline. However, no improvements (RA (in %)) are
observed for (5dB, 10dB, 15dB) of Babble and (5dB) of
HF-channel noisy speech, using NMF-VAD w.r.t. no com-
pensation baseline. However, best improvements (mean of
RA (in %)) of 5.15 (Babble), 15.23 (F-16), 10.44 (Factory),
16.9 (HF-channel) and 19.57 (Volvo) are observed for Ψ3
(10th root-MFCC+VTS-AM)+f̃ ) over the baseline (as shown
in Table I and Figure 2). And, the next best system with
absolute improvements (mean of RA (in %)) are observed
as 0.9 (Babble), 13.53 (F-16), 7.09 (Factory), 8.7 (HF-
channel) and 14.52 (Volvo) Ψ2 (log-MFCC+VTS-AM)+f̃ )
over the baseline. While experimenting with system (Ψ1 (log-
MFCC+VTS)+f̃ ), absolute improvements (mean of RA (in
%)) of 9.38 (F-16), 4.6 (Factory), 1.75 (HF-channel) and 12.37
(Volvo) are observed over the on compensation baseline, but
no improvements are found for 10dB and 15dB of Babble
noise contaminated speech. However, it should be noted that
the performance of (Ψ1 (log-MFCC+VTS)+f̃ ) is still better
than the NMF or NMF+VAD system. From these experiments,
it is clear that the best performance is achieved by applying
VTS-AM feature compensation along with 10th root and
feature selection for non-MFCC high level descriptors.

IV. CONCLUSION

In this paper, we propose front-end feature compensation
and selection technique for noisy speech emotion recognition.
VTS based feature compensation with psychoacoustic masking
has been proved to be beneficial. While computing MFCC
features, 10th root compression found to gel well with VTS-
AM in comparison with the log compression. Concatenation
of selected high-level descriptors of low-level non-MFCC
features and VTS-AM compensated MFCCs yielded the best
performance in train-test mismatched conditions. The fact that
the proposed method outperforms previously used NMF-based
enhancement or even the NMF-VAD by a significant margin,
clearly indicates its efficacy.
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