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Abstract—The process of In Vitro Fertilization deals nowadays
with the challenge of selecting viable embryos with the highest
probability of success in the implantation. In this topic, we
present a computer-vision-based system to analyze the videos
related to days of embryo development which automatically
extracts morphokinetic features and estimates the success of
implantation. A robust algorithm to detect the embryo in the
culture image is proposed to avoid artifacts. Then, the ability
of Convolutional Neural Networks (CNNs) for predicting the
number of cells per frame is novelty combined with the Sum
of Absolute Differences (SAD) signal in charge of capturing the
amount of intensity changes during the whole video. With this
hybrid proposal, we obtain an average accuracy of 93% in the
detection of the number of cells per image, resulting in a precise
and robust estimation of the morphokinetic parameters. With
those features, we train a predictive model based on Random
Forest classifier able to estimate the success in the implantation
of a blastocyst with more than 60% of precision.

Index Terms—Embryo, IVF, morphokinetic parameters, im-
plantation, image processing, machine learning, deep learning.

I. INTRODUCTION

Nowadays, infertility is one of the main problems of repro-

ductive health in the current society. According to [1], in 2010

around 48.5 million couples were affected by infertility prob-

lems. In Vitro Fertilization (IVF) is one of the main techniques

to face this problem. However, this process is characterized by

a low pregnancy rate, propitiating the implantation of more

than one blastocyst that could lead to multiple pregnancies

[2]. In order to mitigate the number of undesired multiple

births, the quality of the implanted blastocyst is under research

in recent years [3]. Time-lapse embryo imaging during the

in vitro culture provides images of the embryo each 5-25

minutes. These images allow analyzing the morphology during

its different stages without affecting the culture conditions

with the aim of selecting the best blastocysts to be transferred

[4]. Currently, the challenge resides in obtaining relevant

features which correlate with the success in the implantation.

Computer-vision-based systems are vital to accomplish this

objective because of their ability to deal with huge amounts

of data and remove the high level of subjectivity and intra-

observer variability.

Many morphokinetic parameters that correlate with embryo

implantation have been proposed in the literature, such as

the polar body extrusion [5], pro-nuclei quality [6], grade of

fragmentation in the cells [7] or the zona pellucida thickness

[8]. However, the most relevant features related to embryo

quality are the timing of the first cell divisions [9]. Those

parameters are defined as we illustrate in Fig. 1. In particular,

the timestamps of embryo division from 2 to 5 cells are

represented as t2 , t3 , t4 , t5 respectively. Additionally, the

temporal intervals related to the mitosis are defined as a linear

combination of cell division instants, being cc2 = t3− t2 and

cc3 = t5−t3. The correlation of those morphokinetic features

(related to the timing in the cellular division) with the success

in embryo implantation has been analyzed in [9]–[11]. In

particular, the authors of [9] present a hierarchical model based

on the fact that embryos presenting timing division levels far

from the population average values have less probability of

implantation. It is important to remark that in the most of

the state-of-the-art approaches involving the computation of

morphokinetic features, the creation of automatic predictive

models for embryo implantation is not addressed [12]–[15].

This work presents an artificial-intelligence-based system

that takes as an input the time-lapse videos of the embryo

culture and automatically estimates the morphokinetic features

detailed in [9] to predict the success of the implantation. We

present a robust algorithm to locate the embryo in the culture

image avoiding artifacts in the next morphokinetic feature-

extraction stage. The feature-extraction step represents the

main contribution of this paper. We propose a hybrid approach

based on the combination of the predicted number of cells

per frame using Convolutional Neural Networks (CNNs) and

the temporal information of the Sum of Absolute Differences

(SAD). This proposed hybrid methodology outperforms the

most relevant state-of-the-art methods of automatic estimation

of morphokinetic parameters. In the second step and making

use of the obtained features, we train a Random Forest classi-

fier with the aim of predicting the success in the implantation.

To the best of our knowledge, this is the first time that a fully-

automated system (without combining image-based features

with manually morphological classification) to characterise the
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Fig. 1. Morphokinetic parameters related to first embryo cleavage.

embryo quality and estimate the embryo success in the embryo

implantation is presented.

II. MATERIALS AND METHODS

A. Materials

The database used in this work is composed of 263 time-

lapse videos in which the monitoring of the embryo devel-

opment during the first days is carried out by means of the

EmbryoSlide® system in the Valencian Institute of Infertility

(IVI). The acquired videos provide a gray-level vision of the

embryo, registering one image of 500 × 500 pixels every 15

minutes during 4 days. The embryos belong to IVF processes

where only one embryo was transferred. For each embryo of

the database, a label containing if it was a successful birth

(liveborn) or unsuccessful implantation (non-implantation) is

available. For the validation of the morphokinetic features,

every frame of each video was manually annotated according

to the number of cells in the image (i.e. 1 cell, 2 cells, 3 or 4

cells, 5 or more cells). Note that the database is composed of

around 70000 images, where the aforementioned classes are

distributed in 25%, 20%, 20% and 35% respectively.

B. Preprocessing

Due to the acquisition procedure of embryo culture videos,

some gel artifacts and sperm are present in the raw dataset.

The first step of the proposed methodology focuses on the

automatic extraction of a region of interest (ROI) centered

on the blastocyst with the aim of avoiding noise in the

following steps of the algorithm. Previous works developed the

detection of the ROI removing the known background of the

microscope device, and thresholding the image to obtain the

biggest element centroid [13]. This method could be sensitive

to the number of artifacts and changes in the illumination,

that could affect the threshold applied. In this work, a robust

algorithm for embryo location in the culture is developed. This

is based on the changes produced in the cytoplasm of the

embryo between consecutive frames, while the artifacts in the

image remain constant. Let v[x, y, t] be a grayscale embryo

video, with x and y the spatial coordinates and t the time

instant. The following steps are defined to automatically obtain

a ROI centered on the embryo.

1) Obtain the absolute difference between one frame (Fig. 2

(a)) and the following. The result of this operation is a

image with speckle noise inside the embryo (see Fig. 2

(b)).

vd[x, y] = abs(v[x, y, ti]− v[x, y, ti+1]) (1)

2) Smooth the speckle image with a convolutional gaussian

filter G[x, y] (Fig. 2 (c)).

vds[x, y] = vd[x, y]�G[x, y] (2)

3) Enhance the center of the embryo, applying to vds[x, y]
an erode operation with a circular element ee[x, y] of

radious ree = 70 pix. (Fig. 2 (d)).

vdse[x, y] = (vds � ee)[x, y] (3)

4) Detection of the embryo center coordinates [cxcy], being

those the points where the projections of the image in x

and y axis (see Fig. 2 (e)) get the maximum intensity.

cx = argmax(
∑

y

vdse[x, y]) (4)

cy = argmax(
∑

x

vdse[x, y]) (5)

Once the center of the embryo is obtained, a rectangular

window around it is cropped, whose size is constant for all

the samples.

C. A hybrid method to estimate morphokinetic parameters in
embryos

Once the embryo is located and extracted from the image,

the next step is to detect the cell division timings. For that

purpose, we propose a novel method built as a combination

of two different approaches. The first one is based on the

estimation of the amount of intensity changes produced in

each frame, considering that the intensity changes produced

by a cellular division in consecutive frames are higher than

those produced in regular frames in which the embryo remains

constant. The intensity changes of consecutive video frames

can be computed following the Sum of Absolute Differences

(SAD) defined as follows:

SAD[ti] = abs(
∑

x

∑

y

(v[x, y, ti]− v[x, y, ti+1])) (6)

The SAD signal provides a value per frame, and it registers

peaks in the cellular division moments as shown in Fig. 3
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Fig. 2. Algorithm for embryo location in the culture image. (a): One frame v[x, y, ti]. (b): absolute difference image between (a) and the consecutive frame,
vd[x, y]. (c): vds[x, y], image (b) after applying a gaussian filter to smooth it. (d): vdse[x, y], results of applying a morfological filter of erosion over (c).
(e): projections in x and y of (d).

Fig. 3. Signal SAD and cellular divisions.

The second approach focuses on building a classifier able

to predict the number of cells in each frame. Let v[x, y, ti]
be an embryo grayscale image at instant i, the objective is to

predict the label li, corresponding to the different target classes

defined as l ∈ L {1 cell, 2 cells, 3-4 cells, 5+ cells}. Note that

the images with 3 and 4 embryos are joined in the same class.

Due to the low frame rate used in the acquisition process, we

have available an insufficient number of frames to discriminate

between 3 and 4 cells. Then, for all the frames in one video,

the signal N [t], i.e. the number of cells in each instant, is ob-

tained. This approach is developed following a strategy based

on automatic feature learning through Convolutional Neural

Networks (CNNs). The proposed architecture (presented in

Table I) is built upon the CNN proposed in [13] and it is

trained using the cropped embryo images as input during 15
epochs in which the cross-entropy function is minimized by

means of the Stochastic Gradient Descent (SGD) optimizer

defining a learning rate lr = 0.005 and a batch size bs = 32.

In the inference stage, the CNN gives, for each image, a

probability of membership to each one of the possible classes.

Of course, the final label for each video frame is obtained

by the class which provides the highest probability. The CNN

does not take into account biological constrictions to take its

prediction. For example, its decision does not contemplate that

the number of cells cannot decrease along time. In this work,

we provide this information to the predictive model by means

of Conditional Random Field (CRF) [15]. This mechanism

consists of minimizing the energy of the cost function defined

as follows:

E(N [t]) =

t=T∑

t=1

ψU
t (Nt) +

t=T−1∑

t=1

ψP
t (Nt, Nt+1) (7)

Being ψU
t (Nt) the unitary term, defined as the inverse log-

arithm of the probability given by the CNN in the number

TABLE I
ARCHITECTURE OF THE CNN USED.

N Layer Size

0 Input 128 x 128
1 Conv 24 x 11 x 11
2 Conv 64 x 5 x 5
3 Conv 96 x 3 x 3
4 Conv 96 x 3 x 3
5 Conv 64 x 3 x 3
6 FC 512
7 FC 512
8 FC 512
9 FC 4
10 Softmax 64 x 3 x 3
11 Classification 64 x 3 x 3

Conv: Convolutional + Relu
Fc: Fully-Connected + Relu

Max-Pooling 3 x 3 applied after Conv 1, 2 and 5

of cells, and ψP
t (Nt, Nt+1) the pair term, that gives infinite

energy if Nt <= Nt+1, and energy zero otherwise. The

process is implemented iteratively.

The signal N [t] is constrained by the image acquisition

system that captures images 2D of a 3D object. This produces

that, after one cellular division, one cell could occlude others,

being impossible to detect them. This is a problem for the

predictive models which provide N [t]. However, the SAD[t]
signal should register a peak at the cell division instant taking

into advantage the information of the previous and current

frames. Then, both signals have complementary information

and, as a novelty in this work, they are combined to improve

the accuracy and robustness of the system. In order to compute

the morphokinetic features, the transitions registered by the

N [t] signal are analyzed (e.g. the temporal instants where N [t]
changes from one to two cells is assigned as t2 parameter). If

one of the transitions is lost, the complementary information

captured by the SAD[t] signal is introduced. In particular, the

timestamp in which the SAD[t] signal presents a prominent

peak in the expected area of the lost transition is now selected

to calculate the morphokinetic parameter to be estimated.

D. Non-implantation / Liveborn prediction

Once the morphokinetic features are obtained, a machine-

learning model is trained to predict the success in the embryo

implantation. The labels used are liveborn if it is successful
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and non-implantation otherwise. The extensive study of the

morphokinetic features developed in [9] shows the non-linear

correlation of those with implantation success. Taking this fact

into account, a Random Forest model is trained as predictor.

To the best of the authors’ knowledge, this is the first time

that a non-linear classifier is trained to predict the success in

the implantation from the previously estimated timings of first

cellular divisions.

III. RESULTS

A. Evaluation of the morphokinetic parameters estimation

In order to validate the proposed methodology, it is followed

a 5 fold cross-validation strategy performed on the 80% of the

videos of the database, while the remaining 20% of the videos

are used to test the predictive models. Regarding the estimation

of the morphokinetic parameters, the prediction of the number

of cells per frame is evaluated. Note that the accuracy per

class is the figure of merit used to quantify the performance

of each model. The results obtained for each combination

of the methods presented in II are shown in Table II. In

particular, the raw predictions of the CNN are compared with

the predictions obtained when the CNN output is combined

with the information of the SAD signal. Additionally, the

influence of the post-processing CRF method is studied. Note

that a comparison with the work proposed in [13] is also

reported although it is not a direct comparison due to the

inexistence of public databases to establish fair analogies.

TABLE II
PRECISION IN THE CELL NUMBER DETECTION

- Accuracy(%)
Method 1 cell 2 cells 3-4 cells 5+ cells Avg.

Validation set
CNN 93.99 82.03 70.68 76.97 80.93

CNN+CRF 95.70 88.20 74.45 85.68 86.01
CNN+CRF+SAD 98.11 91.60 82.39 97.34 92.36
Khan et al. [13] 100.00 99.47 82.60 90.54 93.15

Test set
CNN+CRF+SAD 99.56 87.83 83.46 95.12 91.49
CNN: Convolutional Neural Network ; CRF: Conditional Random Field

SAD: Sum of Absolute Differences

The CNN approach to predict the number of cells obtains

an average accuracy of 80%, while the CRF post-processing

improves the average accuracy around 6%. As main novelty,

in the present work, a combination of the SAD signal with

the CNN + CRF model is proposed, to improve those cases

in which cells are covered by other cells or artifacts. When

SAD information is included the results improve in a 6% in

average, obtaining a multi-class accuracy of 92%. Remark that

the precision obtained when predicting +5 cells outperforms

the most relevant state-of-art works (remember about the

indirect character of the comparison). The results obtained in

the testing database are also presented in Table II. A similar

performance of the system can be observed. This fact reflects

the absence of overfitting in the trained predictive models and

the robustness in the estimation of the number of cells per

frame that allows an accurate calculation of the morphokinetic

parameters.

B. Validation of the non-implantation/liveborn predictive
model

The prediction of the success in embryo implantation is

done with the morphokinetic parameters presented in I fol-

lowing the conclusions of [9] about the possibility to improve

pregnancy rates with that information. The results about the

prediction of the non-implantation (NI) or liveborn (LB) of the

embryo are presented for each one of the 5 cross-validation

groups separately. Specifically, the accuracy per class and the

average values are reported in Table III.

TABLE III
ACCURACY OF LB/NI PREDICTION IN BLASTOCYST TRANSFER

- Accuracy(%)
Group NI LB Avg.
CV-I 43.33 66.66 54.99
CV-II 70.83 38.88 54.85
CV-III 56.52 61.11 58.81
CV-IV 62.50 42.30 52.40
CV-V 50.00 33.33 41.66

CV-Avg. 56.63 48.46 52.54
Test 73.33 46.70 60.00

CV: Cross-Validation
NI: Non-Implantation ; LB: Liveborn

The average precision for both classes in the training set

is 52%. This could be interpreted as a random classifier

between both classes, without prediction ability. However,

analyzing each cross-validation fold separately, some of them

present a higher precision in the classification, mainly for

the non-implantation class (i.e. CV-II, CV-III or CV-IV). The

performance of the LB/NI predictive model on the test set

should be carefully analyzed. A wide improvement on the

accuracy for the non-implantation class (73.33%) is registered

giving place to an average precision for both classes of 60%.

In order to understand the low results obtained during the

cross-validation strategy, and study the ability of the mor-

phokinetic features to estimate the implantation of the embryo,

Fig. 4 shows two of the features, concretely t2 against t5. In

particular in Fig. 4(a), we represent t2 against t5 according

to the liveborn/non-implantation, while in Fig. 4.(b) t2 versus

t5 is depicted according to the training and test group, where

each sample was randomly assigned.

In Fig. 4(a) it can be observed how the majority of the

samples are scattered around the average value of t2 and t5,

independently to the labelled class (i.e. liveborn and non-

implantation). The main differences between classes can be

shown in the extreme values, those with high and low t2 and t5
parameters. Note that, in these extreme cases there exist more

samples with non-implantation than liveborn. The differences

in the results obtained between the different cross-validation

groups and the test subset can be explained paying attention

to the distribution of the samples in the groups. Fig. 4(b)

shows that in the groups CV-I and CV-V there are not many
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Fig. 4. Distribution of parameter t2 (in hours) against t5 (in hours).
In (a) those parameters are represented according to the embryo labels
(i.e. liveborn/non-implantation), while in (b) the representation is performed
according to the groups in cross-validation and test. CV: cross-validation.

samples with high values of t2 and t5 features and this could

propitiate a drop in the precision for the non-implantation

class. By contrast, in the test group, there are few samples

with high values in t2 and t5 and the final predictive model

is trained using all the cross-validation samples, ensuring

extreme cases in the training set. This fact suggests that

the results obtained on the test subset represent better the

quality of the morphokinetic features to predict the success

in the implantation. Increasing the amount of samples of the

database, a more scattered random distribution of all possible

values t2 and t5 along the groups would propitiate more

consistent results in the cross-validation strategy.

IV. CONCLUSIONS

In this paper we present a system to predict the success in

the implantation of the blastocyst from time-lapse videos of the

in vitro culture, using morphokinetic parameters related to the

timing in the first cell divisions. The computer-vision-based

system covers different steps. First, a robust pre-processing

method to detect the embryo in the image. Then the mor-

phokinetic parameters are accurately calculated, improving the

state-of-the-art results, with a novel combination of CNNs to

predict the number of cells per frame and the SAD signal that

estimates the amount of intensity changes along the time-lapse

video. Finally, and for the first time in this field, a Random

Forests model is trained to automatically predict the success

in the implantation of the blastocysts from the morphokinetic

parameters previously estimated.

In future works, the whole information of the embryo videos

should be taken into account instead of only considering the

discrete information given by the morphokinetic parameters.

To accomplish this objective and estimate the success in

the implantation, a hybrid approach composed by CNNs and

recurrent neural neworks (RNN) will be proposed. Addition-

ally, more time-lapse videos will be acquired enlarging the

blastocyst database.
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