
Monaural Source Separation Based on Sequentially
Trained LSTMs in Real Room Environments

Yi Li, Yang Sun, Syed Mohsen Naqvi
Intelligent Sensing and Communications Group

Newcastle University
Newcastle upon Tyne, UK

{y.li140, y.sun29, mohsen.naqvi}@newcastle.ac.uk

Abstract—In recent studies on Monaural Source Separation
(MSS), the long short-term memory (LSTM) network has been
introduced to solve this problem, however, its performance is
still limited particularly in real room environments. According
to the training objectives, the LSTM-based MSS is categorized
into three aspects, namely mapping, masking and signal ap-
proximation (SA) based methods. In this paper, we introduce
dereverberation mask (DM) and establish a system to train two
SA-LSTMs sequentially, which dereverberate speech mixture and
improve the separation performance. The DM is exploited as the
training target of the first LSTM. Then, the enhanced ratio mask
(ERM) is proposed and set as the training target of the second
LSTM. We evaluate the proposed method with the IEEE and
the TIMIT datasets with real room impulse responses and noise
interferences from the NOISEX dataset. The detailed evaluations
confirm that the proposed method outperforms the state-of-the-
art.
Index Terms—Monaural source separation, long short-term

memory, signal approximation, dereverberation mask, enhanced
ratio mask.

I. INTRODUCTION
In speech source separation, the desired speech signals are

required to be recovered from the mixture. Although the prob-
lem is challenging due to the unknown mixing process, it is
essential for real-world applications such as automatic speech
recognition (ASR), hearing aids and robotics [1]. According
to the number of microphones, the separation problem is
categorized into three cases, namely monaural, binaural and
multichannel source separation. However, MSS is more chal-
lenging because the solution is not unique with only one single
channel of information available [2]. Furthermore, in real room
environments, the room reflections can be challenging because
smearing is caused across time and frequency, which affects
and reduces the separation performance [3].
Recently, deep neural networks (DNN) have been intro-

duced to solve MSS problem and their separation performance
has significant improvement. The DNN-based MSS is catego-
rized into three aspects, namely mapping, masking and signal
approximation (SA) based methods, according to the train-
ing objectives [2]. Mapping-based targets correspond to the
spectral representations of the desired signal, while masking-
based targets concentrate the time-frequency relationships of
the desired signal to background interference [3] [4]. However,
SA-based targets combine the advantages of the other two sorts
of targets and improve separation performance [5].

Several approaches have been introduced to address the
MSS problem with the above mentioned three types of training
targets. For example, Jin and Wang applied DNN to estimate
the ideal binary mask (IBM) for the speech separation [6]. But,
IBM is a binary mask, and the associated hard decision causes
a loss in the separation performance [7]. Then, a DNN that
estimates the ideal ratio mask (IRM) has been confirmed to
improve the objective speech quality in addition to predicted
speech intelligibility [8]. Besides, each Time-Frequency (T-F)
unit is assigned as the ratio of desired speech signal energy to
mixture energy [9]. The IRM-based method outperforms the
IBM-based method but cannot efficiently reduce the reflections
in real room environments. In [4], Sun et al. exploited an ideal
enhanced mask (IEM) with two trained DNNs to dereverberate
and separate speech signals.
Recurrent neural networks (RNN) treat input samples as a

sequence and model the changes over time [3]. The RNN plays
an important role in learning the temporal dynamic of speech
but are limited to the vanishing or exploding gradient problem
[10]. Hence, long short-term memory block was introduced to
further improve the performance [11]. For example, Chen et
al. introduced long short-term memory block in RNN and the
generalization ability of the neural network model was refined.
In this paper, we introduce a new sequentially trained

LSTMs method to further improve the separation performance
in real room environments. The organization of this paper is
as follows: the proposed method is introduced in Section II. In
Section III, the experimental settings and results are provided.
The conclusions and future work are given in Section IV.

II. PROPOSED METHOD

In the MSS problem, the convolutive mixture is generated
by the clean speech signal, background interference, and the
real room impulse response:

y (m) = s (m) ∗ hs (m) + i (m) ∗ hi (m) (1)

where the s(m), i(m) and y(m) denote the clean speech
signal, the background interference and the mixture at discrete
time m, respectively. The hs and hi are the impulse responses
of speech signal and interference, respectively. And ‘∗’ is the
convolution operator. Different from DNNs, the LSTM block
in RNN uses memory cells and three gates with long-term
speech contexts. The forget gate decides how much previous
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information is erased from the cell and the input gate decides
how much information is added to the cell [12].

it = σ (Wixxt +Wihht−1 + bi) (2)

ft = σ (Wfxxt +Wfhht−1 + bf) (3)

The equations (2) and (3) describe the input and forget gates
which are represented by it and ft, respectively. xt and ht

are input and hidden activations at time t. W ’ s, and b’ s are
weights and biases. Because the gates are bounded to [0, 1] by
the function σ(s), the output of the LSTM block is bounded
to [-1, 1] [12].
By using the Short Time Fourier Transform (STFT), the

speech mixture can be represented as:

Y (t, f) = S (t, f)Hs (t, f) + I (t, f)Hi (t, f) (4)

where S(t, f), I(t, f) and Y (t, f) are the spectrum of speech,
interference and speech mixture, respectively. Hs(t, f) and
Hi(t, f) are the room impulse response of speech signal
and interference in time-frequency domain, respectively. The
spectrum of the clean speech is estimated with the ideal T-F
mask M(t, f) as:

S (t, f) = Y (t, f)M (t, f) (5)

One of the training targets, IRM is defined as a soft decision
as [3]:

IRM (t, f) =

(

|S (t, f)|2

|S (t, f)|2 + |I (t, f)|2

)β

(6)

where β represents a tunable scaling parameter and is selected
0.5 in most of situations for the best separation performance.
When the environment is reverberant, the early reflections are
considered. Therefore, the IRM with reverberant environment
is expressed as [3]:

IRMr (t, f) =

(

|D (t, f)|2

|S (t, f)|2 + |I (t, f)|2

)β

(7)

where D (t, f) is the direct sound. In practice, reverberant
speech consists of three components: the direct sound, early
and late reflections. However, by using this method, the direct
sound is obtained, which is still different from the clean speech
signal, because the value of direct path is not always equal to
1.
To address this problem, the DM was proposed to eliminate

most of the reflections [4]:

DM (t, f) = |S (t, f) + I (t, f)| |Y (t, f)|−1 (8)

Even though, in practice, to obtain the dereverberated
mixture is very challenging. Besides, the original SA-LSTM
method performance is limited to highly reverberated envi-
ronments. Therefore, in this paper, we propose a sequentially
trained two-LSTMs with DM and new enhanced ratio mask
(ERM) for speech separation in highly reverberant room
environments.

The block diagram of the proposed method is shown in
Fig. 1. In the training stage, DM, the training target of the
first LSTM is obtained from the targets calculation module
after the mixture is generated by the clean speech signals
and the background interferences. After the first LSTM is
trained, the estimated dereverberated mixture is obtained from
the estimated mask ˆDM (t, f):

Ŷdere (t, f) = Y (t, f) ˆDM (t, f) (9)
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Fig. 1. The block diagram of the proposed method. In the training stage,
two LSTMs are trained sequentially with the DM and the ERM as training
targets, respectively. In the testing stage, the features of the mixture are used
to estimate DM and ERM. Finally, the desired speech signal is obtained in
the separation module.

Hence, we can generate a new proposed ERM to separate
the desired speech signal, which can be expressed as:

ˆERM (t, f) =
|S(t, f)|

|Ŷdere (t, f) |
(10)

In the testing stage, two sequentially trained LSTMs are
used. The final separated speech signal can be obtained from
the separation module as:

Ŝ(t, f) = ˆERM(t, f) ˆDM(t, f)Y (t, f) (11)

The feature combination, similar to [4] and [13], is used in
our proposed method, which contains the amplitude modula-
tion spectrogram (AMS), relative spectral transform and per-
ceptual linear prediction (RASTA-PLP) [14], mel-frequency
cepstral coefficients (MFCC), cochleagram response and their
deltas are extracted by the 64-channel gammatone filterbank
to generate the compound feature [15].
Compared with single SA-LSTM, by using sequentially

trained LSTMs, the estimated dereverberated mixture is ob-
tained by using the estimated DM from trained LSTM1. Then,
the new ratio mask, ERM, is calculated by using the desired
speech signal and the estimated dereverberated mixture. The
proposed ERM can better model the relationship between the
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clean speech signal and the estimated dereverberated mixture.
Therefore, the separation performance is further improved and
can be confirmed by the detailed evaluations in the following
section.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Experimental Settings
The clean speech source signals are randomly selected from

the TIMIT [16] and the IEEE [17] corpora which are 720
clean utterances from a male speaker in the IEEE corpus and
6300 utterances from 630 speakers in the TIMIT database.
By using both datasets, it confirms that the proposed method
is speaker-independent. The noise interferences are selected
from NOISEX database [18]. The factory, babble, and cafe
noise interferences from NOISEX database are used in our
evaluations. Each noise interference signal has four minutes
long and it is divided into two clips with the same length.
One is used to generate training data and another is used to
generate testing data. Hence, in total, there are 5400 mixtures
(600×3×3) in training data, 1080 mixtures (120×3×3) in
testing data. All of the DNNs of the comparison group and
the proposed method have three hidden layers and each hidden
layer has 512 units.
The speech mixtures are generated by the convolution

of speech signals and interferences with the room impulse
responses (RIRs) [4] which are recorded in four different types
of room environments i.e. different RT60s. The parameters are
illustrated in Table 1:

TABLE I
ROOM SETTINGS FOR REAL RIRS [4]

Room Size Dimension (m3) RT60 (s)
A Medium 5.7× 6.6× 2.3 0.32
B Small 4.7× 4.7× 2.7 0.47
C Large 23.5× 18.8× 4.6 0.68
D Medium 8.0× 8.7× 4.3 0.89

Besides, to evaluate the generalization ability of the pro-
posed method, in training and testing stages, we use different
RIRs, the RIRs in training data are unseen in the testing data.
For comparison, these clean speech signals are mixed with
various interferences at three different SNR levels (-3 dB, 0
dB and 3 dB).

B. Experimental Results and Analysis
As the outputs of the different stages of different state-

of-the-art methods, the spectrograms are plotted in Fig. 2.
From the spectrograms, the separated signal with the proposed
method is more similar to the clean speech signal because the
ERM is introduced and the reflections are further eliminated by
the proposed method. Therefore, the separation performance
is further improved.
There are two evaluation measures, the short-time objective

intelligibility (STOI) and improved source to distortion ratio
(∆SDR). The values of the STOI are bounded in the range of
[0, 1], which indicates the human speech intelligibility scores.
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Fig. 2. The spectrograms of clean speech signal, reverberant mixture,
estimated speech signals with the SA-LSTMmethod and the proposed method,
respectively. The result is selected from 120 experiments due to the best
separation performance and the inference used to generate mixture is the
factory noise with -3 dB SNR level.

The SDR is exploited to evaluate the overall separation per-
formance [21]. The ∆SDR is calculated by using unprocessed
speech mixture and the estimated speech signal. The higher
values of these measurements mean that the desired speech
signal is better reconstructed. The experimental results are
presented in Table II and Figs. 3-6.
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Fig. 3. The improved SDR (dB) in terms of different SNR levels and proposed
and state-of-the-art methods. The X-axis is the SNR level and the Y-axis is
the improved SDR. Each result is the average value of 120 experiments and
the inference used to generate mixture is the factory noise.

The first comparison is among the complex ideal ratio mask-
DNN (cIRM-DNN) [19], the original SA-LSTM [20] and
the proposed methods in terms of STOI performance. As the
increase of the mixing SNR levels, the separation performance
is improved. Because, in the mixture, the energy level of
the desired speech signal is larger. Besides, compared with
the performance with different types of noise interferences,
it can be observed from Table II that when the noise type is
babble, the separation performance is relatively low. Due to the
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TABLE II
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, SNR LEVELS AND NOISE.

EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD INDICATES THE BEST RESULT.

Noise factory babble cafe
SNR level -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB
Unprocessed 0.53 0.53 0.53 0.52 0.52 0.52 0.58 0.58 0.58

cIRM-DNN [19] 0.56 0.57 0.58 0.54 0.56 0.58 0.52 0.55 0.59
SA-LSTM [20] 0.57 0.58 0.59 0.56 0.57 0.59 0.60 0.60 0.61
Proposed Method 0.64 0.65 0.67 0.61 0.63 0.65 0.69 0.69 0.70
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Fig. 4. The improved SDR (dB) in terms of different SNR levels and proposed
and state-of-the-art methods. The X-axis is the SNR level and the Y-axis is
the improved SDR. Each result is the average value of 120 experiments and
the inference used to generate mixture is the babble noise.
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Fig. 5. The improved SDR (dB) in terms of different SNR levels and proposed
and state-of-the-art methods. The X-axis is the SNR level and the Y-axis is
the improved SDR. Each result is the average value of 120 experiments and
the inference used to generate mixture is the cafe noise.

unseen speakers in the babble noise interference, it is difficult
for networks to distinguish and separate the desired speech
signal. From Table II, it is clear that the proposed method
outperforms the cIRM-DNN and SA-LSTM methods in all
SNR levels and scenarios. For instance, in 3 dB SNR level, for
the factory noise, the proposed method can achieve 0.67 over
STOI although the original SA-LSTM method only achieves
0.59 and the cIRM-DNN method only achieves 0.58.
Improved SDR in terms of different SNR levels and methods

for the factory noise can be observed in Fig. 3. Three SNR
levels are used (-3, 0 and 3 dB) to evaluate the separation
performance of proposed methods. Unlike STOI, as the in-
crease of the mixing SNR levels, the separation performance
falls. The difference in terms of ∆SDR with the unseen RIRs
between the original SA-LSTM method and the proposed
method is significant at three SNR levels. The proposed
sequentially trained LSTMs method outperforms the state-
of-the-art method. For example, in -3 dB SNR levels, the
proposed method can achieve 57.9 % more improvements
compared with the original SA-LSTM method over ∆SDR.
Similarly, the other two noise interferences are introduced

and the performance of the proposed method is still out-
standing. The results with babble noise in terms of ∆SDR
are shown in Fig. 4. The difference is clear except at 3 dB
SNR. As for the cafe noise result in Fig. 5, ∆SDR with
the unseen RIRs between the original SA-LSTM method and
the proposed method reaches 1.46 dB and 1.97 dB at -3 dB
SNR. Furthermore, for the same SNR level, the values in the
improved SDR with the unseen RIRs under the original SA-
LSTM method and the proposed method is not consistent with
a variety of noise interferences.
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Fig. 6. The improved SDR (dB) in terms of different real rooms with various
RT60s and proposed method under -3 dB SNR. Room settings for real RIRs
are listed in Table I. The X-axis is the rooms and the Y-axis is the improved
SDR. Each result is the average value of 120 experiments and the inference
used to generate mixture is the cafe noise.

It can be observed from Fig. 6 that as the increase of RT60s,
more reflections will exist in the mixture and the ERM can lead
to a higher SDR improvement. For instance, compared with
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the performance with cafe noise, the proposed method can
obtain 56.3 % more improvement in Room A than in Room D.
If the RIRs are seen, the better separation performance will be
obtained. For example, the proposed method achieves 21.1 %
more improvements in Room B compared with Room A over
∆SDR with the babble noise. Besides, due to the influence
of the direct-to-reverberant energy ratio (DRR), although the
RT60s in Room C is higher than Room D, the separation
performance is much lower over ∆SDR [22].
In summary, the experimental results confirm that the pro-

posed method can further improve the separation performance
compared with the cIRM-DNN and the original SA-LSTM
methods in both SDR and STOI. By introducing the DM
and the ERM, the majority of the reflections are removed
and the desired speech signal can be better estimated from
the dereverberated speech mixture. Furthermore, the required
information in the dereverberated mixture is considered by
our proposed method where the original SA-LSTM method
ignores.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we explored sequentially trained LSTMs
architectures for MSS problems. Overall, the separation per-
formance in terms of ∆SDR and STOI was enhanced by
optimizing soft T-F masks, DM and ERM, and obtaining
the dereverberated mixture. In the proposed method the se-
quentially trained LSTMs better utilized the estimation of the
first trained LSTM and improved the separation performance.
By using the proposed ERM to separate the desired speech
signal from the dereverberated speech mixture, the separation
performance was further improved.
To further improve the performance, the first direction is

utilizing the phase information of the desired signal to operate
the separation in the complex domain. The phase spectrum
plays an important part in increasing perceptual quality [19].
The second direction is stacking LSTM cells to model longer
temporal information [23].
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