
On Realizing Distributed Deep Neural Networks:
An Astrophysics Case Study

Maria Aspri†?, Grigorios Tsagkatakis?, Athanasia Panousopoulou? and Panagiotis Tsakalides†?
? Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH)

† Department of Computer Science, University of Crete, Greece
Heraklion, 70013, Greece

{aspri, greg, tsakalid}@ics.forth.gr, n.panousopoulou@gmail.com

Abstract—Deep Learning architectures are extensively adopted
as the core machine learning framework in both industry and
academia. With large amounts of data at their disposal, these ar-
chitectures can autonomously extract highly descriptive features
for any type of input signals. However, the extensive volume
of data combined with the demand for high computational
resources, are introducing new challenges in terms of computing
platforms. The work herein presented explores the performance
of Deep Learning in the field of astrophysics, when conducted
on a distributed environment. To set up such an environment,
we capitalize on TensorFlowOnSpark, which combines both
TensorFlow’s dataflow graphs and Spark’s cluster management.
We report on the performance of a CPU cluster, considering
both the number of training nodes and data distribution, while
quantifying their effects via the metrics of training accuracy
and training loss. Our results indicate that distribution has
a positive impact on Deep Learning, since it accelerates our
network’s convergence for a given number of epochs. However,
network traffic adds a significant amount of overhead, rendering
it suitable for mostly very deep models or in big Data Analytics.

Index Terms—Distributed Deep Learning, Convolutional Neu-
ral Networks, Spectroscopic Redshift Estimation

I. INTRODUCTION

Deep Neural Network (DNN) architectures [1] are becom-
ing a pervasive tool in modern data analysis, with applications
in a plethora of domains, from generic image classification [2],
to remote sensing [3] and speech recognition [4]. Furthermore,
their potential is actively investigated in scientific data process-
ing problems, including the analysis of astronomical observa-
tions [5]. To handle the massive quantities of computations
needed for training DNNs, Graphical Processing Units (GPUs)
have been extensively employed as a commodity hardware due
to their parallel computation capabilities and large memory
bandwidth [6]. Despite significant advances in terms of hard-
ware capabilities, the fact remains that single machine setups
do not posses sufficient computational resources to efficiently
training complex DNNs.

To address this limitation, different philosophies regarding
the distributed training of DNNs have been considered, includ-
ing model parallelization [7] and data parallelization [8], with
the latter being the preferable approach, since it provides better
fault-tolerance and resource utilization. In data parallelization
paradigms, the most prominent examples involve synchronous

[9] and asynchronous training [10], while coordination is
facilitated by a Parameter Server (PS) [11].

Nevertheless, very little has been reported on how data
distribution affects the performance of a distributed DNN. In
this work, we are trying to fill this gap by studying the effects
of data distribution. The proposed approach capitalizes on
TensorFlowOnSpark (TFoS), a platform that allows distributed
training and inference on a cluster of machines based on the
prolific framework of TensorFlow.

To quantify the performance, we train a Convolutional Neu-
ral Network (CNN) for estimating galaxy redshift from simu-
lated spectroscopic measurements which adhere to the publicly
available specifications of the European Space Agency Euclid
platform [12], [13]. Our study contributes the following:

• Evaluation on whether or not different data on each
worker can lead to further improvement of the perfor-
mance of a DNN.

• Discussion and evaluation of the tradeoffs between dis-
tributed and traditional DNNs.

• Quantification the impact of the cluster’s size on the
performance of Distributed DNNs.

II. DISTRIBUTED DNN FRAMEWORK

The distributed DNN architecture considered in this work is
based on TensorFlowOnSpak1 [14], for managing TensorFlow-
based distributed DNN workflows on Apache Spark clusters
[15]. Apache Spark is the mainstream technology for in-
memory analytics [16] over commodity hardware. Spark ex-
tends the MapReduce model [17] by the use of an elastic
persistence model, which provides the flexibility to persist
these data records, either in memory, on disk, or both.
Therefore, Spark favors iterative processes met in machine
learning and optimization algorithms. Briefly, Spark organizes
the underlying infrastructure into a hierarchical cluster of
computing elements, comprised of a master and a set of N
workers. The master is responsible for the configuration of the
cluster, while the workers perform the learning tasks submitted
to them through a driver program, along with an initial dataset.
The partitioning of the dataset relies on the concept of the
Resilient Distributed Dataset (RDD), which is defined as a
read-only collection of data records. Each learning task is split

1https://github.com/yahoo/TensorFlowOnSpark

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

into sequential stages, performed by each worker on different
data blocks. Upon finishing, the results return to the driver
which assigns another stage of the learning task to the worker,
until all stages have been completed. The results can either stay
on the driver or be exported to a storage system.

Opposed to its counterparts (e.g., Distributed TensorFlow
[18]) TFoS exploits Spark native mechanisms for the auto-
mated configuration of the cluster, while the direct tensor
communication favors scalability, simply by adding machines
into the cluster. This aspect is also highlighted in in Section III,
indicating that the use of TFoS can yield a scalable solution
on the problem of galaxy velocity parameter estimation.

In a typical TFoS cluster, each node is coordinated by Spark
and acts as a container that locally executes the operations
of TensorFlow graphs. A node is randomly selected to act
as the PS and is responsible for providing a global average
of network parameters, while the rest of the nodes are re-
sponsible for training and operating on the RDDs defined
by the underlying Spark architecture. TFoS bypasses the
communication philosophy of Spark, thereby allowing direct
tensor communication between TF processes.

TFoS implements the concept of Parameter Server (PS)
for enabling the smooth integration of TensorFlow code over
Spark clusters, with minimum changes on the original Ten-
sorFlow code. We opted to perform asynchronous training for
updating the PS, therefore, an issue known as the stale gradient
problem emerged [19]. The stale gradient problem states that
when a worker has send its parameters to the PS, the global
parameters stored in the PS may have already been updated a
number of times by other workers. In order to overcome this
issue, instead of updating global parameters immediately, the
PS was forced to wait to collect some number s of updates
Wj from any of the M training workers, such as 1 ≤ s ≤M .
The parameters are then updated according to the following
equation:

Wi+1 = Wi −
1

s

s∑
j=1

λ(∆Wj)∆Wj (1)

where λ(∆Wj) is a scalar staleness-dependent scaling factor
[19]. Once the variables are updated they are redistributed
across the machines, so they can begin the next epoch.
Although this update routine mitigates the issue of the stale
gradients, it adds overhead to the network since it slows down
the overall training process.

III. USE CASE: SPECTROSCOPIC REDSHIFT
ESTIMATION

Redshift (z) is parameter encoding the shift of the spectrum
of astronomic objects like galaxies towards longer (redder)
wavelengths due to the accelerated expansion of the universe.
As a result, redshift estimation plays a fundamental role in
astronomical signal processing, as it can be used to accurately
estimate galaxies’ radial distances and their position.

An effective method for accurately predicting redshift es-
timation is through Deep Learning classification over large

amounts of data obtained from spectroscopic observations
converted into signals. To classify these signals, we consider
a 1D CNN consisting of three layers of convolutions with
non-linear activation functions and two fully connected layers,
the last of which produces the final classification output. The
convolutions employ kernels of length 8 while the Rectified
Linear Unit activation function is employed [13].

For our experiments, we produce simulated data, modeled
after signals received from real satellites. In order to generate
a more realistic dataset, each signal encodes spectroscopic
content in the range of 1.1 to 2.0µm which is mapped to 1800
distinct spectral bands. In our setup, we treat the problem of
redshift estimation as a multi-class classification problem by
dividing the redshift range z = [1 - 1.8) to 800 classes.

In this work, we study the aforementioned problem through
a distributed framework. As stated before, our scheme focuses
on data parallelization and employs asynchronous training.
The simulated dataset, along with their respective labels is
given as an input in the form of an RDD bundle, compressed
by using the zipWithIndex transformation. The RDD is then
split across different machines. Then, the training process is
performed locally, by using a replica of the whole CNN. At
the end of each epoch, the PS collects the resulting global
variables and updates them.

IV. EVALUATION STUDIES
A. Cluster Setup

Fig. 1: TFoS Cluster Setup.

To benchmark the proposed framework, the experiments
were run on a cluster of 5 PCs, featuring TensorFlow Core
version 1.2.1, Apache Spark version 2.1.1, Apache Hadoop
version 2.6, and TensorFlowOnSpark version 1.0.0. Master is
configured with an Intel Core i7-6700 3.40GHz CPU, and has
allocated 8GB memory and 450 GB disk space. Meanwhile,
workers are configured with Intel Core i5-3470 3.20GHz
CPUs, have allocated 2GB memory and 450 GB disk space.

Figure 1 presents our architecture. It depicts Spark nodes
connected via Ethernet. The Master configures the cluster
through the driver, and workers communicate through TFoS
tensor communication. Hadoop’s Distributed File System
(HDFS) [20]is configured for hosting the dataset, which is
then distributed across all Workers of the cluster distributes
RDDs across the nodes responsible for training the CNN.

2019 27th European Signal Processing Conference (EUSIPCO)

B. Experimental Results

A series of experiments were conducted using two sets
simulated noisy data from section III, consisted of 5K and 15K
training samples respectively. Our goal is to study the impact
of the following parameters: (i) the number of distributed
computing nodes, and (ii) the distribution of data among the
nodes. Regarding the data distribution, we explore two cases,
where in the first case the same data is presented to all working
nodes, while in the second case, disjoint sets of examples are
utilized by each node. The experiments presented below, were
also conducted on an identical non-parallelized CNN, which
serves as our baseline.

Figure 2 presents the performance of the CNN as a function
of training accuracy. From top to bottom, Figures 2(a),(b)
present the results of the 5K samples set for the cases of
same and different data, respectively, while Figures 2(c),(d)
provide the results for the 15K samples set. We notice that
that in most cases, using multiple working nodes has a positive
impact in terms of accuracy, for a given number of training
epochs. However, adding more machines raises the cluster’s
total overhead, due to increased network traffic. For the case
of two workers, we observe that when same data are used,
the performance between 1 and 2 working nodes is similar,
while when different sets of examples are considered, there
is a significant difference in terms of accuracy by each of the
distributed nodes. For the case of three computing nodes, there
is a clear benefit in both cases of using the same or different
training examples.

Specifically for the 15K samples set, we observe that the
larger amount of training samples has a positive effect on
the system’s learning capacity and the performance variation
across different machines is less prominent. The sequential
CNN attains over 75% accuracy faster for this set, at three
epochs, but the cluster gains similar behavior as we add more
machines. Specifically, in the one-node cluster, the CNN needs
about 8 epochs to reach the same accuracy as the sequential
case, while for the 3-node cluster the amount of epochs
required is reduced to 4.

Figure 3 presents the number of epochs required to reach
a stable performance, which is introduced through an early
stopping criterion in terms of differences in accuracy between
successive training epochs. These results clearly support the
argument that distribution processing platforms can have a
significant advantage in terms of processing time, leading
to a 25% reduction in the epochs needed to achieve stable
performance, for both training datasets. Furthermore, we also
observe that for larger number of computing nodes, the impact
of data distribution becomes less important. A natural question
to ask is how training loss behaves in our distributed frame-
work. Figure 4 depicts the number of epochs required to reach
a stable performance, using identical criteria as before but in
terms of loss differences between epochs instead of accuracy,
while Figure 5 presents the values of the achieved by the loss
function, both on the 5K dataset.

The results of Figure 4 once again demonstrate the positive

1 2 3 4 5 6 7 8

Epochs

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Worker 1/1

Worker 1/2

Worker 2/2

Worker 1/3

Worker 2/3

Worker 3/3

Single Machine

(a) 5K samples set, same data on each worker.

1 2 3 4 5 6 7 8

Epochs

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Worker 1/1

Worker 1/2

Worker 2/2

Worker 1/3

Worker 2/3

Worker 3/3

Single Machine

(b) 5K samples set, different data on each worker.

1 2 3 4 5 6 7 8 9 10

Epochs

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Worker 1/1

Worker 1/2

Worker 2/2

Worker 1/3

Worker 2/3

Worker 3/3

Single Machine

(c) 15K samples set, same data on each worker.

1 2 3 4 5 6 7 8 9 10

Epochs

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Worker 1/1

Worker 1/2

Worker 2/2

Worker 1/3

Worker 2/3

Worker 3/3

Single Machine

(d) 15K samples set, different data on each worker.

Fig. 2: Training epochs for various cluster sizes.

2019 27th European Signal Processing Conference (EUSIPCO)

Criteria 1 (Patience=1, minimum delta=0.001) Criteria 2 (Patience=3, minimum delta=0.0001)
5K-Same Data 5K-Different Data 5K-Same Data 5K-Different Data

Single Machine 8 epochs 8 epochs 14 epochs 14 epochs
1 Worker 8 epochs 8 epochs 16 epochs 16 epochs

2 Workers Worker#1 7 epochs 6 epochs 13 epochs 15 epochs
Worker#2 7 epochs 5 epochs 13 epochs 15 epochs

3 Workers
Worker#1 6 epochs 6 epochs 13 epochs 10 epochs
Worker#2 6 epochs 6 epochs 13 epochs 10 epochs
Worker#3 6 epochs 6 epochs 13 epochs 10 epochs

TABLE I: Epochs needed to achieve stable performance for different early stopping parameters.

Fig. 3: Number of epochs required to reach a plateau in
training accuracy performance.

effect of our platform in terms of distributed processing time,
reducing it by 50% when different sets of examples are
considered. However, when each worker sees the same data
the impact, although visible, is negligible. Meanwhile, Figure
5 suggests that, when the same data is used, the performance
between most of the nodes is similar, while when different sets
of examples are considered, there is a significant difference in
terms of loss in the cases of two- and three-nodes cluster.
We also observe that loss behaves similar to accuracy, in
that it drops faster on the sequential CNN, however similar
performance is attained one epoch later, regardless of its size.

To further evaluate the distributed framework, we applied
another set of early stopping parameters, tested on the 5K
samples dataset, and present the results along with the initial
ones in Table I. We experimented on various cluster sizes,
considering both cases of data distribution. Training accuracy
was selected as the quantity to be monitored. The set of
parameters we decided to experiment with are: (i) patience,
which represents the number of epochs before stopping, once
accuracy stops improving and (ii) minimum delta, a threshold
to quantify whether accuracy has improved or not at the end
of each epoch. As a result, our new criteria (right column) are
less strict than the old ones (left column), as indicated by the
higher patience and the smaller minimum delta.

These changes lead to a higher number of epochs required

Fig. 4: Epochs required to obtain the minimum loss.

for training. Similar behavior can be observed in both cases of
early stopping, with the amount of epochs decreasing as more
nodes are added into the cluster. However, for our new set of
parameters, we observe that after a certain number of nodes
the amount of epochs required to achieve a stable performance
remains the same, when the same set of examples is taken into
consideration. On the other hand, this is not true for the case
of different sets of data, as in the 3 nodes case the results show
a 30% reduction in processing time. However, TFoS does not
perform well compared to non-parallelized CNN when same
data are considered, since it needs 13 epochs to reach a a
stable performance for the 3-node cluster, while the sequential
CNN needs 14. When different datasets are considered, the
performance of TFoS caps at 10 epochs for the 3-node cluster,
much better than the sequential CNN.

2019 27th European Signal Processing Conference (EUSIPCO)

Fig. 5: Loss performance for different cluster sizes.

V. CONCLUSIONS

In this work we evaluate the performance of TensorFlowOn-
Spark, over a 5-node CPU Spark Cluster. Our proposed setup
implements data parallelization, in tandem with asynchronous
distributed training. We conducted experiments with noisy
simulated data, used for redshift estimation, and our results
provide the following contributions:

• Distributed CNNs have a similar behavior to traditional
setups, in the sense that larger amount of training samples
has a positive effect on the system’s learning capacity. As
a result, it is safe to assume that transporting a DNN to
a distributed environment does minimal damage on the
network’s overall performance.

• Multiple workers have a positive effect on our distributed
CNN, since they help our network to converge much
faster than the sequential case. However, they also add
considerable overhead to the network, due to the higher
number of transfers and bottlenecks caused by the PS.

• In terms of accuracy, the impact of data distribution
becomes less important the higher the number of training
node a cluster has. For fewer number of nodes though,
our experiments showed better performance when each
node has access to different sets of training data.

• However, when we conduct experiments in terms of loss,
data distribution has high impact regardless of cluster
size. In this case, for different data per worker the cluster
converges faster the more nodes we add, while for same
data the differences are minuscule no matter the cluster
size.

• Furthermore, we concluded that for distributed training
to be worthwhile, the computation benefit of multiple
machines, has to outweigh the introduced overheads.
This usually happens when training time on a single
machine becomes extremely large, either due to network
complexity or large amounts of data.

ACKNOWLEDGMENT

This work was funded by the DEDALE project contract
no. 665044 within the H2020 Framework Program of the
European Commission.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. E.Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436444, 2015.

[2] S.-J. Lee, T. Chen, L. Yu, and C.-H. Lai, “Image classification based on
the boost convolutional neural network,” IEEE Access , 2018.

[3] Q. Zou, L. Ni, T. Zhang, and Qian Wang, “Deep learning based feature
selection for remote sensing scene classification.,” IEEE Geosci. Remote
Sensing Lett., vol. 12, no. 11, pp. 23212325, 2015.

[4] M. Chen, X. He, J. Yang, and H. Zhang,“3-d convolutional recurrent
neural networks with attention model for speech emotion recognition,”
IEEE Signal Process. Lett., vol. 25, no. 10, pp. 14401444, 2018.

[5] P. Graff, F. Feroz, M. P Hobson, and A. Lasenby, “Skynet: an efficient
and robust neural network training tool for machine learning in astron-
omy,” Monthly Notices of the Royal Astronomical Society, 2014

[6] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability
of gpu-based convolutional neural networks,” in Parallel, Distributed
and Network-Based Processing, 2010 18th Euromicro International
Conference on. IEEE

[7] S. Lee, J.K. Kim, X. Zheng, et al., “On model parallelization and
scheduling strategies for distributed machine learning,” in Advances in
neural information processing systems, 2014.

[8] M. Zinkevich, M. Weimer, et al., “Parallelized stochastic gradient
descent,” in Advances in neural information processing systems, 2010

[9] D. Das, S. Avancha, D. Mudigere, et al.,“Distributed deep learning using
synchronous stochastic gradient descent,” CoRR, 2016.

[10] Y. Oyama, A. Nomura, I. Sato, H. Nishimura, Y. Tamatsu, and S.
Matsuoka, “Predicting statistics of asynchronous sgd parameters for a
large-scale distributed deep learning system on gpu supercomputers,” in
Big Data, 2016 IEEE International Conference on. IEEE, 2016

[11] M. Li, D. G Andersen, J.W. Park, A. J Smola, et al., “Scaling distributed
machine learning with the parameter server.,” in OSDI, 2014

[12] J. Rhodes, R. C Nichol, E. Aubourg, R. Bean, et al., Scientific synergy
between lsst and euclid, The Astrophysical Journal Supplement Series,
vol. 233, 2017

[13] R. Stivaktakis, G. Tsagkatakis, B. Moraes, F. Abdalla, Jean-Luc Starck,
and P. Tsakalides, “Convolutional neural networks for spectroscopic
redshift estimation on euclid data,” unpublished.

[14] X. Lu, H. Shi, R. Biswas, et al., “Dlobd: A comprehensive study of
deep learning over big data stacks on hpc clusters,” IEEE Transactions
on Multi-Scale Computing Systems, 2018.

[15] M. Zaharia, R. S Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, et al.,
“Apache spark: a unified engine for big data processing,” Communica-
tions of the ACM, vol. 59, no. 11, pp. 5665, 2016.

[16] Z. Zhang, K. Barbary, F.A. Nothaft, E. Sparks, O. Zahn, M. J Franklin,
et al., “Scientific computing meets big data technology: An astronomy
use case,” in Big Data (Big Data), 2015 IEEE International Conference
on. IEEE, 2015, pp. 918927.

[17] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[18] C. Jia, J. Liu, X. Jin, H. Lin, H. An, W. Han, et al., “Improving
the performance of distributed tensorflow with RDMA,” International
Journal of Parallel Programming, vol. 46, no. 4, 2018.

[19] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware async-
sgd for distributed deep learning,” InProceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, 2016.

[20] M. Saouabi and A. Ezzati, “A comparative between hadoop mapreduce
and apache spark on HDFS,” in Proceedings of the 1st International
Conference on Internet of Things and Machine Learning, IML 2017,
Liverpool, United Kingdom, October 17-18, 2017.

2019 27th European Signal Processing Conference (EUSIPCO)

