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Abstract—The paper addresses adaptive algorithms for
Volterra filter identification capable of exploiting the sparsity
of nonlinear systems. While the l1-norm of the coefficient vector
is often employed to promote sparsity, it has been shown in
the literature that superior results can be achieved using an
approximation of the l0-norm. Thus, in this paper, the Geman-
McClure function is adopted to approximate the l0-norm and
to derive l0-norm adaptive Volterra filters. It is shown through
experimental results, also involving a real-world system, that the
proposed adaptive filters can obtain improved performance in
comparison with classical approaches and l1-norm solutions.

Index Terms—Nonlinear adaptive filter, Volterra series, spar-
sity, l0-norm, Geman-McClure function

I. INTRODUCTION

Nonlinear systems are frequently found in many different
areas, such as in image and speech/audio processing [1], [2], in
devices using amplifiers like loudspeakers [3], [4], in the study
of biological systems [5], in wireless sensor networks [6], to
name just a few.

The adaptive Volterra filter (AVF) is widely used in those
areas to identify the involved nonlinear system [7]. AVFs rely
on the Volterra series expansion, which can be regarded as
a Taylor series expansion with memory [1]. Although AVFs
truncate the series expansion at a given order P and memory
length N , the number of parameters to be estimated is usually
very high since it increases exponentially with the order P and
geometrically with the memory N . This usually constraints the
application of AVFs to small values of P [7]. In most cases,
P is set to 2 or 3, which means that the AVF is capable of
modeling quadratic or cubic input-output relations.

As we increase P or N , the number of parameters to be
estimated increases rapidly, and the AVF convergence slows
down. However, in such high-dimensional space it is very
common to observe sparsity in the parameters [8]–[10]. This
sparsity can be exploited in order to accelerate convergence
and/or reduce steady-state mean squared error (MSE). There
are several ways of taking sparsity into account in the adaptive
filter. A priori knowledge on the nonlinear system can be
exploited to limit the number of parameters to be adapted,
e.g., using simplified filters [10], [11] or imposing specific
filter structures [8], [9]. On the other hand, effective sparsity
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promoting adaptive algorithms have been developed [12]–
[26]. Very often the solutions proposed in the literature are
based on the l1-norm of the coefficient vector [12]–[17].
However, it has been recently shown [18]–[26] that superior
results can be achieved by adopting for the same purpose an
approximation of the l0-norm. Thus, in this paper a regular-
ization based on the l0-norm approximation of the parameter
vector [20] is adopted in order to derive three new sparsity
promoting algorithms for Volterra filters: the l0-norm Volterra
LMS (l0-VLMS), the l0-norm Volterra normalized LMS (l0-
VNLMS), and the l0-norm Volterra Affine Projection (l0-VAP)
algorithms. We show through experimental results that the
proposed algorithms can obtain superior performance with
respect to classical algorithms and algorithms based on the
l1-norm.

This work is organized as follows. Section II reviews
the fundamentals of the Volterra series and the l0-norm ap-
proximation. Then, in Section III, three LMS-based Volterra
algorithms capable of exploiting sparsity in the parameters
by means of the l0-norm approximation are proposed. These
algorithms are tested in Section IV considering both synthetic
and real-world data coming from a preamplifier experiment.
In both cases, the performance of the proposed algorithms are
superior, in comparison with the classical Volterra algorithms,
which do not benefit from the system sparsity, and their zero-
attractor (ZA) versions, which employ the l1 norm to model
sparsity. The conclusions are drawn in Section V.

II. VOLTERRA SERIES AND l0-NORM

This section provides a brief review of the Volterra series
expansion and the l0-norm approximation in Subsections II-A
and II-B, respectively.

A. The Volterra series

Assume a nonlinear, time-invariant, causal, finite-memory,
and continuous relationship d(k) = f(x1(k)), where x1(k) ,
[x(k) x(k−1) · · · x(k−N)]T , x(k) and d(k) are the input and
the desired signals at the discrete time instant k, and N is the
system memory length. This desired signal can be estimated
by a truncated Volterra series expansion of order P as

d(k) =
P∑
p=0

Wp(x1(k)) + n(k), (1)
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where n(k) is the measurement noise, and using the triangular
form of the Volterra series [1] we define Wp(x1(k)) as

Wp(x1(k)) ,
N∑
l1=0

. . .
N∑

lp=lp−1

wp(l1, . . . , lp)

p∏
i=1

x(n− li), (2)

with wp(l1, . . . , lp), for all l1, . . . , lp, being the p-th order
Volterra kernel. Assuming the constant term of the Volterra
series expansion w0 is zero, for given input and desired signals,
our target is to calculate the Volterra kernels for p = 1, . . . , P ,
for all l1, . . . , lp.

To allow for a compact representation, it is convenient to
rewrite equations (1) and (2) using vector notation [1], [7].
Thus, by setting Wp(x1(k)) = xTp (k)wp, where xp(k) is the
vector formed by all input sample products appearing in (2),
and wp is the vector containing the corresponding Volterra
coefficients wp(l1, . . . , lp), (1) can be expressed as

d(k) = xT (k)w + n(k), (3)

where x(k) , [xT1 (k) · · · xTP (k)]
T , w , [wT

1 · · · wT
P ]
T ,

and we have assumed that the constant term of the Volterra
series expansion is zero.

B. The l0-norm approximation

The l0-norm of a vector w = [w0 w1 · · · wN ]T ∈ RN+1

is defined as ‖w‖0 , #{i|wi 6= 0}, where # stands for
the cardinality of a finite set, i.e., the l0-norm is the number
of nonzero elements of a vector. Although the l0-norm is
directly related to the sparsity of vectors, its practical use
is very limited because [20], [27]: (i) it leads to an NP-
hard problem, (ii) most “sparse systems” found in practice
are actually compressible systems (roughly, their energy is
concentrated in a few coefficients, but every coefficient can
be different from zero), and (iii) it is often an ill-conditioned
problem, meaning that small perturbations on its argument
may lead to very different l0-norm results.

In the compressive sensing literature, most works circum-
vent the aforementioned issues by replacing the l0-norm
with the l1-norm, which also has the advantage of being
convex [12]–[17]. However, recent works indicate that superior
results can be achieved by employing an approximation of the
l0-norm [18]–[26]. Such approximation should be an almost
everywhere differentiable function to allow for gradient-based
algorithms. Among the numerous approximations for the l0-
norm, in this paper we use the Geman-McClure function
(GMF) [20], [23] which, for w ∈ RN+1, is defined as

Gβ(w) ,
N∑
i=0

(
1− 1

1 + β|wi|

)
, (4)

where β ∈ R+ is a parameter responsible for controlling
the agreement between quality of the approximation and
smoothness of Gβ . Fig. 1 depicts the univariate and bivariate
GMFs for some values of β. The gradient of Gβ is given by

∇Gβ(w) , gβ(w) , [gβ(w0) · · · gβ(wN )]T , (5)

w
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Fig. 1. (Left) univariate GMFs for β = 5, 10, and 20. (Right) bivariate GMF
for β = 20. Observe that Gβ gets closer to the l0-norm as β → ∞.

where the entries of vector gβ(w) are

gβ(wi) ,
∂Gβ(w)

∂wi
=

βsgn(wi)

(1 + β|wi|)2
, (6)

where sgn(·) denotes the sign function.

III. l0-NORM LMS-BASED VOLTERRA FILTERS

One of the main issues involving Volterra filters is the
large number of parameters to be estimated since both w and
x(k) in (3) usually belong to a very high dimensional space.
In fact, the Volterra filter tackles the problem of modeling
nonlinear relations by accounting for every possible nonlinear
combination of input data. Due to the excessive amount
of parameters and to the resulting bad conditioning of the
autocorrelation matrix, Volterra filters usually converge slowly.
However, many times the nonlinear relation between d(k) and
x(k) depends only on a few entries of x(k), meaning that w
is sparse. So, in this section, we propose some LMS-based
adaptive Volterra filters capable of exploiting systems sparsity
in order to achieve faster convergence and/or lower steady-
state MSE. More specifically, we derive the l0-norm Volterra
LMS (l0-VLMS), the l0-norm Volterra normalized LMS (l0-
VNLMS), and the l0-norm Volterra Affine Projection (l0-VAP)
algorithms in Subsections III-A, III-B, and III-C, respectively.

A. The l0-VLMS algorithm

The adaptive filter that approximates the desired signal d(k)
utilizing a truncated Volterra series of order P has output

y(n) =xT (k)w(k), (7)

where xT (k) is the same input data vector of (3) and w(k)
is the vector collecting the corresponding coefficients of the
adaptive filter. The error signal e(k) of the nonlinear adaptive
filter is e(k) = d(k)− y(k).

We can now define the objective function of the l0-VLMS
algorithm as follows

ζl0-VLMS =
1

2
|e(k)|2 + α‖w(k)‖0, (8)

where α ∈ R+ is the l0-norm penalty weight. If we replace
the l0-norm with its approximation, we get

ζl0-VLMS =
1

2
|e(k)|2 + αGβ(w(k)). (9)
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Using the steepest-descent method, the recursion rule of the
l0-VLMS algorithm can be given by

w(k + 1) = w(k) + µe(k)x(k)− µαgβ(w(k)), (10)

where µ is the step-size parameter. However, to improve
convergence speed, it is often convenient to adopt different
step-size parameters for the terms of different order, which
generally have different average power. Therefore, the update
equation of the l0-VLMS algorithm is characterized by

w(k + 1) = w(k) +Me(k)x(k)− µ1αgβ(w(k)), (11)

where M = diag([µ1, · · · , µ1, µ2, · · · , µ2, · · · , µP , · · · , µP ]).

B. The l0-VNLMS algorithm

The cost function of the l0-VNLMS algorithm, using the
l0-norm approximation, is defined as

minimize ‖w(k + 1)−w(k)‖2 + αGβ(w(k + 1)),

subject to d(k) = xT (k)w(k + 1). (12)

By using the method of Lagrange multipliers, we have

w(k + 1) = w(k) +
λ

2
x(k)− α

2
gβ(w(k + 1)), (13)

where λ is the Lagrange multiplier. Then, by utilizing the
constraint in (12), we can find λ and substitute it in the
equation above. Thus, we attain

w(k + 1) = w(k) +
µx(k)e(k)

xT (k)x(k) + δ

+
µα

2

[ x(k)xT (k)

xT (k)x(k) + δ
− I
]
gβ(w(k + 1)), (14)

where I is the identity matrix with dimension equal to the AVF
number of coefficients, and δ > 0 is a small constant to avoid
division by zero. If we replace gβ(w(k + 1)) with gβ(w(k))
in order to form the recursion and use different step-sizes for
the terms with different orders, then the update equation of
the l0-VNLMS algorithm can be characterized as

w(k + 1) =w(k) +
Mx(k)e(k)

xT (k)x(k) + δ

+
µ1α

2

[ x(k)xT (k)

xT (k)x(k) + δ
− I
]
gβ(w(k)), (15)

where M is the diagonal matrix containing the step-size
parameters and µ1 is its first entry.

C. The l0-VAP algorithm

When the input signal is correlated, a potential approach to
increase convergence rate is data-reusing [7], [28]. To employ
the data-reusing technique in AVF algorithms, let us use the
last L + 1 values of x(k) and d(k) and introduce the input
matrix X(k) and the desired signal vector d(k) as

X(k) =[x(k) x(k − 1) · · · x(k − L)], (16)

d(k) =[d(k) d(k − 1) · · · d(k − L)]T , (17)

and define the error signal vector e(k) , d(k)−XT (k)w(k).

By utilizing the l0-norm approximation, we can now intro-
duce the objective function of the l0-VAP algorithm as

minimize ‖w(k + 1)−w(k)‖2 + αGβ(w(k + 1)),

subject to d(k) = XT (k)w(k + 1). (18)

Similarly to the l0-VNLMS algorithm, we may employ the
method of Lagrange multipliers to solve the problem. After
doing so, we obtain the following recursion rule

w(k + 1) = w(k) + µX(k)S(k)e(k)

+
µα

2

[
X(k)S(k)XT (k)− I

]
gβ(w(k + 1)), (19)

where S(k) =
(
XT (k)X(k) + δIL+1

)−1
, δIL+1 is utilized

to avoid numerical problems, δ > 0 is a small constant, and
IL+1 is the identity matrix of dimension L + 1. Finally, we
replace gβ(w(k + 1)) with gβ(w(k)) to obtain the recursion
and assume different step-sizes for the terms with different
order employing the diagonal matrix M. The update rule of
the l0-VAP algorithm results in the following

w(k + 1) =w(k) +MX(k)S(k)e(k)

+
µ1α

2

[
X(k)S(k)XT (k)− I

]
gβ(w(k)). (20)

IV. EXPERIMENTAL RESULTS

In this section, considering a system identification problem
for synthetic and real-world data, we compare the performance
of the proposed AVFs, l0-VLMS, l0-VNLMS, l0-VAP, with
the classical Volterra algorithms, VLMS, VNLMS, VAP, given
by (11), (15), and (20), respectively, for α = 0, and with
ZA-VLMS [4], ZA-VNLMS [4], and ZA-VAP algorithms.
The ZA-VAP algorithm is derived similarly to the l0-VAP
algorithm but the l0-norm approximation is replaced by the
l1-norm, thus its update equation can be obained by substi-
tuting gβ(w(k)) with sgn(w(k)) in Equation (20). In Sub-
section IV-A, the algorithms are utilized with synthetic data.
However, in Subsection IV-B they are used in a real-world
problem. For both scenarios, the parameter β in the l0-norm
approximation is set to 20, and the learning curves have been
smoothed by a box filter of length 100.

A. Simulation experiment

For the synthetic example, the nonlinear Volterra channel to
be identified is given by

d(k) =− 0.76x(k) + 0.5x2(k) + 2x(k)x(k − 2)

− 0.5x2(k − 3) + n(k), (21)

where n(k) is a zero-mean white Gaussian noise with variance
0.01. The nonlinear AVF is assumed to be of order and
memory length 3; i.e., N = P = 3. The input signal is a
zero-mean white Gaussian noise with unit variance except for
the VAP, the ZA-VAP, and the l0-VAP algorithms, where the
input signal is a first-order autoregressive process generated
by x(k) = 0.95x(k− 1)+m(k) and m(k) has the zero-mean
Gaussian distribution with unit variance. For all algorithms, the
regularization parameter δ is 10−9. Moreover, all algorithms
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Fig. 2. The MSE learning curves of: (a) the VLMS, the ZA-VLMS, and the l0-VLMS algorithms; (b) the VNLMS, the ZA-VNLMS, and the l0-VNLMS
algorithms; (c) the VAP, the ZA-VAP, and the l0-VAP algorithms, for the correlated input signal and L = 1.

are initialized with the null vector, and the learning curves have
been attained by averaging the outcomes of 500 independent
trials.

Fig. 2(a) illustrates the MSE learning curves of the VLMS,
the ZA-VLMS, and the l0-VLMS algorithms. The step-size
parameters µ1, µ2, and µ3 are selected to be 0.04, 0.004, and
0.0004, respectively. These parameters have been chosen using
a trial and error procedure to obtain a similar convergence
rate at the early iterations in all tested algorithms. Both the
l0-norm and the l1-norm penalty weights in the l0-VLMS
and the ZA-VLMS algorithms are set to 0.005. As can be
seen, the l0-VLMS algorithm has the lowest MSE and the
fastest convergence rate, followed by the ZA-VLMS and
the VLMS algorithms. The better performances have been
obtained thanks to the efficient system sparsity exploitation
through the l0-norm.

Fig. 2(b) shows the MSE learning curves of the VNLMS,
the ZA-VNLMS, and the l0-VNLMS algorithms. The step-size
parameters µ1, µ2, and µ3 are chosen as 0.5, 0.5, and 0.05,
respectively. The l0-norm and the l1-norm penalty weights in
the l0-VNLMS and the ZA-VNLMS algorithms are 0.001 and
0.03, respectively. We can observe that the l0-VNLMS algo-
rithm has the lowest MSE and the highest convergence speed,
followed by the ZA-VNLMS and the VNLMS algorithms.
Furthermore, as can be seen, the normalized AVFs in Fig. 2(b)
have higher convergence rate than those in Fig. 2(a); however,
the AVFs in Fig. 2(b) cannot attain the same MSE as those in
Fig. 2(a).

Fig. 2(c) depicts the MSE learning curves of the VAP, the
ZA-VAP, and the l0-VAP algorithms when the input signal is
the correlated signal. The data-reuse parameter L is equal to
one. The step-size parameters µ1, µ2, and µ3 are set to be 0.1,
0.1, and 0.05, respectively. Both the l0-norm and the l1-norm
penalty weights in the l0-VAP and the ZA-VAP algorithms
are equal to 0.001. We can see that the l0-VAP algorithm
has the lowest MSE, followed by the ZA-VAP and the VAP
algorithms.

B. Real-world experiment

In this subsection, we have utilized the algorithms tested in
the previous subsection in a real-world experiment. Indeed, we
want to identify the coefficients of a preamplifier using a white

input with the probability density function p(x) = 1
π
√
1−x2

,
where x ∈ [−1, 1]. For the settings adopted in this experiment,
on a sinusoidal input at 200 Hz, the preamplifier presents a
second and third order harmonic distortion of 5.6% and 20.2%,
respectively. The reader can see [29] for more details about the
settings in this experiment. The AVFs have memory 15 and
order 3. In order to simplify the step-size choice, the samples
of vector x(n) in (7) were normalized by the square-root of
their average power and the same step-size was used for all
coefficients. The learning curves are the average of outcomes
of 50 independent runs.

Fig. 3(a) illustrates the learning curves of the VLMS,
the ZA-VLMS, and the l0-VLMS algorithms. The step-size
parameter is 0.0013. It has been obtained with a trial and
error procedure and is the value that obtained the minimum
MSE (apart from a dB fraction) with the fastest convergence
speed in the VLMS algorithm. Moreover, the l0-norm and
the l1-norm penalty weights are set to be 0.0001 and 0.0005,
respectively. As can be seen, the l0-VLMS algorithm has the
lowest MSE and the highest convergence rate, followed by the
ZA-VLMS and the VLMS algorithms.

Fig. 3(b) presents the learning curves of the VNLMS, the
ZA-VNLMS, and the l0-VNLMS algorithms. The step-size
parameter is 0.9 and is the value that obtained the minimum
MSE (apart from a dB fraction) with the fastest convergence
speed in the VNLMS algorithm. Furthermore, the l0-norm and
the l1-norm penalty weights are adopted as 10−7 and 0.0005,
respectively, and the regularization parameter δ is chosen as
10−9. We can observe that the l0-VNLMS algorithm has the
best MSE and convergence speed as compared to the VNLMS
and the ZA-VNLMS algorithms. Also, note that the learning
curves of the VNLMS and the ZA-VNLMS algorithms are
very similar, and they are overlaid. It is worth to mention that
the learning curves of the AVFs in Fig. 3(b) are a little faster
than those in Fig. 3(a).

Fig. 3(c) shows the learning curves of the VAP, the ZA-
VAP, and the l0-VAP algorithms when L = 1. The step-size
parameter for each coefficient is the same used for Fig. 3(b),
and the regularization parameter is 10−9. Both the l0-norm
and the l1-norm penalty weights are selected as 5× 10−7. As
can be seen, the l0-VAP algorithm has the highest convergence
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Fig. 3. The MSE learning curves of: (a) the VLMS, the ZA-VLMS, and the l0-VLMS algorithms; (b) the VNLMS, the ZA-VNLMS, and the l0-VNLMS
algorithms; (c) the VAP, the ZA-VAP, and the l0-VAP algorithms, for L = 1.

rate and the lowest MSE in comparison with the VAP and the
ZA-VAP algorithms. Furthermore, as compared to the VAP
algorithm, the superiority of the ZA-VAP algorithm is not
significant.

V. CONCLUSIONS

In this paper, three novel sparsity promoting l0-norm AVF
algorithms have been proposed. The novel algorithms are
based on the Geman-McClure approximation of the l0-norm.
Through experimental results, it has been shown that the
proposed AVFs can obtain improved performance in terms
of convergence speed and steady-state MSE with respect to
both the classical AVFs, and the zero attracting AVFs based
on l1-norm.
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