
Robust Compressive Spectral Image Recovery
Algorithm Using Dictionary Learning and

Transform Tensor SVD
Yesid Fonseca

dept. of mathematics
Universidad Industrial de Santander

Bucaramanga, Colombia
yesid.fonseca@correo.uis.edu.co

Tatiana Gelvez
dept. of electrical engineering

Universidad Industrial de Santander
Bucaramanga, Colombia

tatiana.gelvez@correo.uis.edu.co

Henry Arguello Fuentes
dept. of computer science

Universidad Industrial de Santander
Bucaramanga, Colombia

henarfu@uis.edu.co

Abstract—This paper proposes a low-rank tensor minimization
algorithm to recover a spectral image (SI) from a set of com-
pressed observations. The proposal takes advantage of the trans-
form tensor singular value decomposition (tt-SVD) to promote
a low-rank structure on the recovered SI. The methodology has
three stages. First, a poor low-rank version of the SI is estimated
using the tt-SVD framework with the discrete cosine transform
(DCT). Then, an orthogonal transform is learned from the initial
estimation using dictionary learning. Finally, an algorithm to find
a low-rank approximation of the SI in both, the DCT and the
learned transform is introduced. Quantitative evaluation over two
databases and two compressive optical systems shows that the
proposed method improves the reconstruction quality in up to
10dB as well as it is robust in the presence of noise.

Index Terms—Compressive spectral imaging, Transform tensor
singular value decomposition, Dictionary learning.

I. INTRODUCTION

A spectral image (SI) collects the intensity of reflected
light at various spatial-spectral positions of a scene, which is
useful for detection and classification tasks [1]. Compressive
spectral imaging (CSI) ably acquires the most significant
information of a SI with few random compressed projections
[2]. Mathematically, let F ∈ CN1×N2×N3 be a third-order
tensor that represents a SI with N1×N2 spatial pixels and N3

spectral bands. Further, let A : CN1×N2×N3 −→ Rm be a linear
operator that models a CSI architecture that obtains y ∈ Cm
a set of m� N1N2N3 compressed measurements. Thus, the
CSI process can be written as y = A(F)+ω, where ω ∈ Cm
denotes additive Gaussian noise.

Recovering the SI from the observations y ∈ Cm is a
very ill-posed problem and so forth realistic priors should
be included to find a feasible solution [3]. Low-rank is a
prior related to the high spatial-spectral correlations that are
preserved when modelling a SI as a tensor [4]. This prior
suggests that a SI can be represented with few linearly
independent atoms [5]. Then, it can be used to solve tensor
inverse problems such as tensor completion by promoting a
low-rank structure [6]. Nonetheless, the concept of rank in
a tensor varies according to the definition [7]. For instance,
the definition of the matrix trace can be extended to the

tensor trace for getting a metric of the rank of the tensor [8],
the canonical polyadic or CANDECOMP/PARAFAC method,
which decomposes a tensor as the sum of rank-one outer
products [9]; the tucker decomposition expresses a tensor as
the product of small matrices and a tensor core [10]; the tensor
singular value decomposition (t-SVD) decomposes a tensor
as the t-product of three tensors using the Fourier transform
[11]; and the transform tensor singular value decomposition
(tt-SVD) generalizes the t-SVD decomposition by replacing
the Fourier transform for any orthogonal transform [6].

This paper proposes a methodology of three stages which
takes advantage of the tt-SVD to recover a SI from a set
of compressed observations. The tt-SVD is employed since
it preserves the 3D data structure and it allows us to find
a domain in which the tensor exhibits a lower-rank, by
choosing an implicit orthogonal transform. Specifically, the
first stage estimates a poor low-rank version of the SI from the
compressed observations by using the tt-SVD with the discrete
cosine transform (DCT). Particularly, the DCT is employed
since it shows high performance when condensing the most
relevant information of a SI [12], [13]. The second stage
learns an orthogonal transform to better represent the SI by
using an orthogonal dictionary learning algorithm [14]. The
third stage formulates a CSI recovery inverse problem which
jointly induces a low-rank representation in both, the DC, and
the learned orthogonal transform domain. Experimental results
show that the reconstruction quality improves using only the
learned transform in the tt-SVD framework but just in the
noiseless case. On the other hand, the reconstruction quality
shows a stable behaviour when only the DCT transform is used
for noisy measurements. Therefore, the main contribution of
the paper is a reconstruction algorithm that improves the image
quality and is robust in the presence of noise. Quantitative
simulation results over two datasets and two CSI optical
systems show that promoting a low-rank tensor structure on
both, the DCT and the learned transform domains, improves
the quality of the CSI recoveries in up to 10dB in terms of
spatial peak signal to noise ratio.
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Fig. 1. CSI remarkable architectures. The CASSI mask uses opaque and
translucent pieces codifying the spatial dimension. The CCASSI mask uses
color filters codifying the spatial-spectral dimension.

II. COMPRESSIVE SPECTRAL IMAGING OPTICAL SYSTEMS

The coded aperture snapshot spectral imager (CASSI) [1],
and the colored coded aperture snapshot spectral imager
(CCASSI) [15], [16], are two CSI architectures that acquire
sets of measurements in a single snapshot using a mask to
encode the information. Figure 1 shows a top view of the phys-
ical acquisition process for a single spatial-spectral slice using
CASSI, and CCASSI, to acquire a SI with N1 ×N2 = 6× 6
spatial pixels, and N3 = 4 spectral bands. In CASSI, the
slice is spatially encoded and spectrally dispersed before being
integrated in the sensor, where mCASSI = N1(N2 +N3 − 1)
measurements. In CCASSI, the slice is spatially and spectrally
encoded with a mask that contains color optical filters. Then,
the light is integrated into the sensor obtaining mCCASSSI =
N1N2 measurements. Multiple snapshots can be obtained by
using a different masks in both architectures.

III. TENSOR RANK DEFINITION

This section defines the rank of a tensor using an orthogonal
transform Θ : CN3 −→ CN3 as presented in [6], [17].

Definition 1. Θ-transform of a tensor. Given the third-order
tensor F ∈ CN1×N2×N3 , the Θ-transform of F is the tensor
F̂Θ ∈ CN1×N2×N3 defined as

F̂Θ(n1, n2, :) = Θ(F(n1, n2, :)), (1)

where F(n1, n2, :) denotes the tube f (n1,n2) = [F(n1, n2, 1)
F(n1, n2, 2) . . . F(n1, n2, N3)]T for n1 = 1, . . . , N1, and
n2 = 1, . . . , N2. This is a linear and invertible operation.

Definition 2. Block diagonal matrix for a tensor. It is
denoted by F̄Θ ∈ CN1N3×N2N3 , and can be expressed as

F̄Θ = diag(F̄
(1)
Θ , F̄

(2)
Θ , · · · , F̄(N3)

Θ ), (2)

where F̄
(n3)
Θ is a matrix in CN1×N2 corresponding to the

n3−th frontal slice of F̂Θ, i.e., its entries are given by
F̄

(n3)
Θ (n1, n2) = F̂Θ(n1, n2, n3), for n3 = 1, . . . , N3.

Definition 3. Tensor rank. Let F ∈ CN1×N2×N3 be a tensor.
The tensor rank (t-rank) denoted by r := t-rank(F) is defined
as the maximum rank of each slice of F̂Θ , i.e.,

r := t-rank(F) = max
1≤n3≤N3

rank(F̂Θ(:, :, n3)). (3)

Definition 4. Given a tensor F ∈ CN1×N2×N3 its Nuclear
norm is given by

‖F‖∗ :=
∥∥F̄Θ

∥∥
∗ =

∑
1≤n3≤N3

∥∥∥F̂Θ(:, :, n3)
∥∥∥
∗
. (4)

IV. ROBUST CSI RECOVERY ALGORITHM BASED ON
TT-SVD AND DICTIONARY LEARNING

The proposed method to recover a SI is based on tt-SVD
to jointly promote a low-rank structure over the DCT and a
learned transform domain, consists of three main stages. The
first stage encompasses an initial estimation of the SI F̂

0
∈

RN1×N2×N3 from the compressed measurements y ∈ Cm by
using the tt-SVD approach with the DCT, denoted by Θ1 :
CN3 → CN3 . The second stage involves the learning of an
orthogonal transform, denoted by Θ2 : CN3 → CN3 , using the
initial estimation F̂

0
. The third stage provides the recovery of

the SI by solving the proposed inverse problem, which looks
for a low-rank representation of the SI in both, the DCT Θ1

and the learned transform Θ2 domains.

A. Stage 1: Initial Estimation

Given the set of compressed observations y = A(F) ∈ Cm
of the SI F ∈ CN1×N2×N3 , acquired with the compressive
linear operator A : CN1×N2×N3 → Cm, and the DCT, Θ1 :
CN3 → CN3 . The CSI inverse problem based on tt-SVD to
find the initial estimation F̂

0
aims at finding a tensor X ∈

CN1×N2×N3 , such that, t-rank(X ) ≤ t-rank(F), as well as,
A(X ) = y, by solving

minimize
X∈CN1×N2×N3

t-rank(X ) (5)

subject to A(X ) = y.

To solve the problem in (5) which is not convex, let us use
the fact that authors in [6] proved that the tensor nuclear norm
‖·‖∗ is the convex envelope of the tensor rank, t-rank(·). In
consequence, the nearest convex problem to (5) can be written
as

minimize
X∈CN1×N2×N3

‖X‖∗ (6)

subject to A(X ) = y.

To write (6) in a convenient form, let Ω be the set of all
block-diagonal matrices which have N3 matrices of dimension
N1 × N2 in their diagonal, i.e., if X̄ ∈ Ω, then X̄ has the
following form

X̄ = diag(X̄(1), X̄(2), · · · , X̄(N3)), (7)

where X̄(k) ∈ CN1×N2 for k = 1, . . . , N3. It is clear that
the space of tensor CN1×N2×N3 is isomorphic to Ω, because
dim(CN1×N2×N3) = N1N2N3 = dim(Ω).
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Let GΘ1
: CN1×N2×N3 → Ω denote the linear injective op-

erator that converts the third-order tensor in its block diagonal
form with respect to the transform Θ1, i.e., GΘ1(F) = F̄Θ1 .
Then, by definition 4, we have that ‖X‖∗ = ‖GΘ1(X )‖∗, thus,
problem in (6) is equivalent to

minimize
X∈CN1×N2×N3

‖GΘ1
(X )‖∗ (8)

subject to A(X ) = y,

which is also equivalent to the following convenient problem

minimize
X̄∈Ω

∥∥X̄∥∥∗ (9)

subject to A ◦ G−1
Θ1

(X̄) = y.

Problem in (9) is efficiently solved in [18].

B. Stage 2: Learning of a Transform Operator

As the kernel of the tensor rank framework presented in
section III is an orthogonal transform, the learning of a
transform operator to represent the SI was carried out through
the orthogonal dictionary learning technique presented in [14].
This methodology designs a dictionary that better fits a sparsity
model using a learning process. In particular, we employ
the initial estimation of the SI F̂

0
as the input to learn the

orthogonal transform Θ2 : CN3 → CN3 .

C. Stage 3: CSI Inverse Problem for Final Estimation

This paper proposes an inverse problem which looks for
a low-rank approximation of the SI in the DCT Θ1 and the
learned orthogonal transform Θ2 domains. For this, problem
in (8) can be rewritten as

minimize
X̄∈Ω, W∈CN1×N2×N3

∥∥X̄∥∥∗ (10)

subject to X̄ = GΘ1
(W), A(W) = y.

Therefore, the proposed inverse problem in this paper consists
on the modification of problem (10) as

minimize
X̄,Z̄∈Ω,

W∈CN1×N2×N3

∥∥X̄∥∥∗ + λ
∥∥Z̄∥∥∗ (11)

subject to X̄ = GΘ1
(W), Z̄ = GΘ2

(W),

A(W) = y.

Notice that, the augmented Lagrangian function of (11) is

Lβ(X̄, Z̄,W , D̄1, D̄2,d) =
∥∥X̄∥∥∗ + λ

∥∥Z̄∥∥∗ (12)

+
β

2

∥∥X̄− GΘ1
(W) + D̄1

∥∥2

F

+
β

2

∥∥Z̄− GΘ2
(W) + D̄2

∥∥2

F

+
β

2
‖A(W)− y + d‖2F ,

where D̄1, D̄2 ∈ Ω and d ∈ Cm are the scaled dual vari-
ables, and β > 0 is the penalty parameter. In this manner, to
solve problem (11) we use the following extended alternating
direction method of multipliers (ADMM) [19] iterative scheme

X̄k+1 = argminLβ(X̄, Z̄k,Wk, D̄k
1 , D̄

k
2 ,d

k), (13)

Z̄k+1 = argminLβ(X̄k+1, Z̄,Wk, D̄k
1 , D̄

k
2 ,d

k), (14)

Wk+1 = argminLβ(X̄k+1, Z̄k+1,W , D̄k
1 , D̄

k
2 ,d

k), (15)

D̄k+1
1 = D̄k

1 + X̄k+1 − GΘ1(Wk+1), (16)

D̄k+1
2 = D̄k

2 + Z̄k+1 − GΘ2(Wk+1), (17)

dk+1 = dk +A(Wk+1)− y. (18)

Observe that, convergence of the previous extended ADMM
is ensured by the orthogonality condition of the linear con-
straint in (11) [20]. Further, subproblem (15) is a Frobenius
norm minimization problem with closed form solution. Finally,
subproblems (13) and (14) have been efficiently solved in
[18] exploiting the following concept. Let Dδ : Ω → Ω be
the shrinkage operator which makes a soft threshold to the
singular values, i.e., given Ȳ ∈ Ω with SVD Ȳ = ŪS̄V̄∗,
with Ū, S̄, V̄ ∈ Ω, then Dδ(Ȳ) := Ū(S̄ − δI)+V̄

∗, where
(a)+ := max{0, a}. In [21], [22] it was proved that the
shrinkage operator provides the solution of the problem

Dδ(Ȳ) = argmin
X̄∈Ω

δ
∥∥X̄∥∥∗ +

1

2

∥∥X̄− Ȳ
∥∥2

F
. (19)

In this manner Algorithm 1 summarizes the extended AD-
DMM iterative scheme.

Algorithm 1 Robust CSI recovery based on tt-SVD
1: procedure CSI–SVD(A : CN1×N2×N3 → Cm; y ∈

Cm ; λ, β > 0; n; Θ1,Θ2 : CN3 → CN3 )
2: k ← 0 , W0 ← 0 , D̄ 0

1 ← 0 , D̄ 0
2 ← 0 , d0 ← 0

3: while k < n do
4: X̄k+1 ← D1/β(GΘ1

(Wk)− D̄k
1).

5: Z̄k+1 ← Dλ/β(GΘ2
(Wk)− D̄k

2).
6: Wk+1 ← argmin Lβ(X̄k+1, Z̄k+1,W , D̄k

1, D̄
k
2,d

k)
7: D̄k+1

1 ← D̄k
1 + X̄k+1 − GΘ1

(Wk+1).
8: D̄k+1

2 ← D̄k
2 + Z̄k+1 − GΘ2

(Wk+1).
9: dk+1 ← dk +A(Wk+1)− y.

10: end while
11: return Wn

12: end procedure

V. SIMULATIONS AND RESULTS

A. Experimental Setup

The compressed measurements were obtained simulating the
CASSI and CCASSI systems. Experiments vary the amount of
captured data which refers to the ratio between the observa-
tions with respect to the total amount of pixels, i.e.,

% of data =
m

N1N2N3
. (20)

Further, experiments vary the noise level which was included
in the measurements as additive Gaussian noise. This noise
was quantified in terms of the signal to noise ratio (SNR),
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Fig. 2. RGB map of toys, Urban, and Jasper HSI databases.

measured in decibels [dB], which compares the level of the
signal to the level of noise, and is given by

SNR =
10 log10(Psignal)

10 log10(Pnoise)
, (21)

where, P denotes average power.
The experiments were carried out over two databases: a

scene containing four toys, F1 ∈ R149×199×32 captured at
our laboratory; and a section of the Jasper database, F2 ∈
R100×100×50 taken from [23]. An RGB visualization of these
databases is shown in Fig. 2

Qualitative evaluation is based on the peak signal to noise
ratio (PSNR). The spatial PSNR of the estimated SI is calcu-
lated as the average between the PSNRn3 for n3 = 1, . . . , N3

at each spectral band. The PSNR for the n3−th spectral band
F(n3) = F(:, :, n3) is given by

PSNRn3
= 10 log10

(
max(F(n3))2

MSE(F(n3), F̃(n3))

)
, (22)

where max(F(n3)) is the maximum possible value of F(n3),
and MSE is the mean squared error between F(n3), and F̃(n3).

B. Experiments

We evaluated the proposed algorithm in various scenarios.
Tables I, II and III present the spatial PSNR when varying
the noise levels, and the percentage of captured data for both
databases, and both CSI architectures. Labels DCT, KSVD,
and JOINT refer to the method used in the recovery process.
DCT refers to the tt-SVD framework using only the DCT;
KSVD refers to the tt-SVD using only the learned orthogonal
transform described in [14], notice that, in this case, the
transform domain is learned from the original data; and JOINT
refers to the proposed method which jointly uses the DCT,
and the learned transform from an initial estimation of the SI,
respectively.

Table I shows the recovery results for the Jasper database
acquired with CASSI when using only the DCT, and the
orthogonal learned transform (KSVD). There, it is evident
that insofar the noise level increases, the performance of the
learned transform decays, while the DCT exhibits a stable
behaviour.

Tables II and III show the comparison between the DCT
and the JOINT method to recover the two databases F1, and
F2, respectively . Notice that, for all cases, the joint method
outperforms the results of using only the DCT even in the
presence of noise.

TABLE I
RECOVERY QUALITY RESULTS IN TERMS OF SPATIAL PSNR [DB] USING
CASSI VARYING THE NOISE LEVEL AND % OF CAPTURED DATA FOR F2

USING THE DCT AND THE KSVD APPROACHES

% of dataSRN [dB] Approach 10 20 30 40
DCT 18,130 17,623 16,584 15,66410 KSVD 6,094 6,620 7,144 7,690
DCT 22,376 23,915 24,210 24,21520 KSVD 8,053 8,948 10,659 11,515
DCT 23,568 26,233 28,170 29,23430 KSVD 13,767 14,537 15,205 15,767
DCT 23,686 26,770 28,991 31,21940 KSVD 20,263 21,433 22,136 22,597
DCT 23,713 26,810 29,203 31,098Inf KSVD 25,923 29,376 31,927 34,413

TABLE II
RECOVERY QUALITY RESULTS IN TERMS OF SPATIAL PSNR [DB]
VARYING THE NOISE LEVEL AND % OF CAPTURED DATA FOR F1

% of dataSystem SNR [dB] Approach 10 20 30 40
DCT 24,396 24,676 24,275 23,23310 JOINT 27,368 26,688 25,234 24,677
DCT 24,921 25,925 27,173 27,75220 JOINT 29,360 30,869 32,685 31,783
DCT 24,995 26,108 27,689 28,75730 JOINT 30,175 32,617 35,080 36,421
DCT 25,004 26,132 27,757 28,89540 JOINT 30,293 32,756 35,668 38,318
DCT 25,977 27,111 28,186 28,903

CASSI

Inf JOINT 30,363 32,983 36,072 38,478
DCT 27,080 26,894 25,523 24,21210 JOINT 29,751 27,945 25,669 24,216
DCT 27,929 31,380 32,545 32,52720 JOINT 34,984 35,038 34,056 33,080
DCT 26,848 30,316 35,303 37,75330 JOINT 37,794 40,579 42,073 42,018
DCT 26,853 29,240 33,571 36,26340 JOINT 38,873 43,245 46,616 48,156
DCT 27,514 31,878 34,115 37,376

CCASSI

Inf JOINT 40,979 47,694 53,212 55,905

TABLE III
RECOVERY QUALITY RESULTS IN TERMS OF SPATIAL PSNR [DB]
VARYING THE NOISE LEVEL AND % OF CAPTURED DATA FOR F2

% of dataSystem SNR [dB] Approach 10 20 30 40
DCT 18,130 17,623 16,584 15,66410 JOINT 20,897 21,839 21,887 21,062
DCT 22,376 23,915 24,210 24,21520 JOINT 24,109 25,670 26,681 27,392
DCT 23,568 26,233 28,170 29,23430 JOINT 25,307 28,605 29,750 31,360
DCT 23,686 26,770 28,991 31,21940 JOINT 25,708 29,196 31,753 33,841
DCT 23,713 26,810 29,203 31,098

CASSI

Inf JOINT 25,404 29,544 31,747 33,927
DCT 17,702 16,714 15,596 14,34310 JOINT 20,081 21,265 20,052 19,943
DCT 23,274 24,214 24,057 23,42320 JOINT 25,157 26,210 25,679 24,712
DCT 26,194 29,164 30,468 30,97830 JOINT 30,266 32,815 33,488 33,242
DCT 26,837 31,054 33,788 35,78140 JOINT 33,008 37,420 40,414 41,180
DCT 27,142 31,408 34,802 37,632

CCASSI

Inf JOINT 33,331 41,592 47,060 47,947
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C. Analysis of the results

For most cases, the proposed method obtains the best
performance. Particularly in the presence of noise it is evi-
dent that using only a learned transform is not sufficient to
obtain an acceptable quality. In addition, the quality results of
CCASSI were superior to those of CASSI. This behaviour is
because CCASSI does not disperse nor multiplexes the spectral
information, which allows the tensor to maintain a direct
correspondence. Finally, the gain of including the Discrete
Cosine transform jointly to a learned transform in the solution
of the CSI recovery problem based on the tensor transform
singular value decomposition gains up to 10dB in the presence
of noise and up to 20 dB in the noiseless case.

On the other hand, the performance of the proposed method
in presence of high levels of noise is better when there is
lower amount of captured data. This is consistent with recovery
problems because there is a relationship between the noise
and the over-determined level of such problems, i.e., as more
observations are acquired more over-determined is the problem
which makes the solutions more sensible to noise.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an three stage methodology to recover
a SI from a set of compressed projections based on the tt-
SVD. The main contribution is the formulation of an inverse
problem which promotes a low-rank structure of the recovered
SI in two domains: the DCT and a learned transform domain.
This improves the recovery quality since the learned transform
better represent the data, and provides robustness to the
recovery process since the DCT is stable in the presence of
noise. The transform was learned by using a fast sparsity-based
orthogonal dictionary technique from an initial estimation of
the scene. The inverse problem was solved by following the
extended ADMM approach. We tested the performance of the
proposal varying the optical system, the amount of captured
data, and the noise level. Simulations in two databases show
that the method improves the quality of the reconstructions in
terms of the spatial PSNR in up to 10dB in the presence of
noise, and in up to 20dB in the noiseless cases.
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