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Abstract—Traditional target detection techniques have been
developed using measurements from the object acquired by
optical systems that are only able to measure its intensity,
losing its optical phase information. The optical phase, for
instance, allows describing the shape and depth of an object.
This work proposes a target identification methodology that
operates over measurements acquired through an optical system
that collects coded diffraction patterns (CDP). In contrast to
traditional detection techniques, the proposed methodology is
able to incorporate the optical phase information of an object
as a discriminant in the target detection task. The proposed
methodology consists of two steps: first, an estimation of the
scene from the acquired CDP is accomplished, second, a scanning
procedure with a reference pattern over the estimated scene is
performed. Numerical results show that the phase information
can be used as an identification discriminant for target detection.
Also, simulations demonstrate that the proposed methodology is
able to identify a target under highly noisy scenarios using one
single snapshot with a success rate up of 84%. Furthermore, it
is worth to mention that to the best of our knowledge this is the
first methodology that uses the optical phase of an object as a
target identification discriminant.

I. INTRODUCTION

Target identification is a task that allows the detection of
an object of interest in a scene. This task has been studied
in several areas such as astronomy [1], medicine [2], and
robotics [3], among others. The target identification can be
performed through a commonly used technique called template
matching (TM) [4]. Specifically, TM allows the target identi-
fication using correlation analysis, which consists on scanning
a scene pixel by pixel using a reference pattern, to calculate
a numerical index that represents the similarity between the
scene and the reference pattern. TM has been also studied by
including a circular harmonic filter (CHF) correlation, which
is invariant to different geometrical and noisy factors [5], [6].

Traditionally, target identification techniques have been ap-
plied using measurements from the scene acquired through
optical systems that can only capture its intensity, losing the
optical phase information. Notice that the optical phase is able
to describe the shape and depth of an object, which cannot
be discriminated by just the intensity data [7]. In this regard,
the estimation of the optical phase of a scene from phaseless
measurements is called the phase retrieval (PR) problem
[8]. Several algorithms have been developed to estimate the
optical phase in a scene from measurements that are acquired
under a setup that collects coded diffraction patterns (CDP)
[9]. From the state-of-the-art is known that designing an
initialization strategy to solve the PR problem is critical to

accurately recover the image using less computational time
and measurements. Recently, several methods [10]–[12] have
been developed to initialize this problem even exploiting prior
information of the image of interest such as sparsity. For
instance, in [10] an orthogonal-promoting initialization (OPI)
is presented to estimate the scene of interest considering the
largest eigenvector and the power iteration method. However,
the literature of PR has not reported studies on how to detect
or identify an object from CDP using its optical phase as an
identification discriminant.

This work proposes a target identification methodology
based on TM that is able to incorporate the optical phase of
an object as an identification discriminant. Since no explicit
target identification approaches that include the optical phase
as discriminant variable exists in the literature, we consider a
methodology that operates over measurements acquired from
an optical system that records CDP, consisting of two steps:
first, an estimation of the scene is performed, second, a scan-
ning procedure using a reference pattern over the estimated
scene is accomplished. Specifically, for the first step, we
propose an initialization procedure based on OPI to estimate
the scene. Also, we use TM as the identification methodology
since it involves the fast Fourier transform to calculate the sim-
ilarity indices [4]. Simulation results show that the proposed
identification methodology is able to use the phase information
as an identification discriminant for target detection tasks. In
particular, the proposed methodology can detect a target even
in highly noisy scenarios with a success rate of up 84% using
one single snapshot. Also, from the numerical results, it can be
concluded that the proposed initialization procedure requires
less number of phaseless measurements to better estimate the
scene compared to state-of-the-art initialization procedures.

Notation. We denote (·)T , (·), and (·)H as the matrix
transpose, conjugate, and conjugate transpose operations, re-
spectively. Additionally, F(·) and F−1(·) represent the two-
dimensional Fourier and inverse Fourier transform, respec-
tively. The operator ◦ corresponds to the Hadamard product.
The floor operation b·c returns the greater integer, smaller
than or equal to the given number. For vectors ‖x‖p is the
usual `p norm. Also, (w)i denotes the i-th entry of vector w.
For matrices the (a, b)-th entry of W is denoted by (W)a,b.
Finally, the distance between two complex vectors w1, w2

∈ Cn is given by
dist(w1,w2) = min

θ∈[0,2π)
‖w1e

−jθ −w2‖2, (1)

where j =
√
−1.
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II. ACQUISITION SYSTEM

This section introduces an optical system that collects CDP
of a scene, which is illustrated in Fig. 1. Further, in contrast
with state-of-the-art optical setups used for target identifica-
tion, this architecture allows the optical phase estimation of
an object from the acquired CDP [13].

Coherent
light

Object

Coded
Aperture

CDP

Source

Fig. 1: Schematic representation of a system that acquires CDP.

Notice that Fig. 1 includes a coded aperture between the
object of interest and the sensor. Specifically, this optical
element modulates the signal before being finally measured
at the sensor. In fact, if we change the spatial configuration
of the coded aperture, this acquisition system allows capturing
multiple snapshots of the scene. Mathematically, the acquisi-
tion process of CDP through the system illustrated in Fig. 1
is given by

y` = |FD`x|2 , ` = 1, · · · , L, (2)

where y` ∈ Rn represents the acquired measurements at each
snapshot indexed by `, F ∈ Cn×n corresponds to the Fourier
discrete transformation matrix, D` ∈ Cn×n is a diagonal
matrix that represents the coded aperture at each snapshot `,
x ∈ Cn is the desired unknown object and |·| represents the
pointwise magnitude. Further, defining y = [yT1 , · · · , yTL]T ∈
Rm=nL and the matrix A = [D1F, · · · ,DLF]T , we can
rewrite the quadratic model in (2) as

y = |Ax|2, (3)

where each row of A is given by ai = Drifui
with ri =

bi/nc + 1, ui = (i − 1) mod n + 1, and fui
the rows of F,

for i = 1 · · ·nL. Also, we specify that the entries of each
matrix D` are i.i.d. copies of a discrete random variable d
obeying |d| ≤ 1.

Considering the illustrated system in Fig. 1, and the acqui-
sition model in (3), this work develops a target identification
methodology from CDP that incorporates the optical phase as
a discriminant. This approach will be detailed explained in
Section III. Finally, it is worth to mention that in the state-
of-the-art has not been previously studied how to identify an
object by exploiting its optical phase by using CDP.

III. TARGET IDENTIFICATION METHODOLOGY

In this section, we describe the proposed target identification
methodology, which includes two main stages: (i) an estima-
tion of the scene from CDP based on OPI as introduced in [10],

and (ii) a detection procedure that follows a TM methodology
including the optical phase information.

A. Scene Estimation

Observe that the measurements in (2) can be rewritten as

(y)i = |〈ai,x〉|2, i = {1, · · · ,m}. (4)

Then, taking (4) into account, define the set I0 ⊂ {1, · · · , nL}
as the collection of indices corresponding to the smallest
values of {(y)i/‖ai‖2}. Thus, according to [10], OPI can be
formulated as

z0 = argmin
‖z‖2=1

zH

(
1

|I0|
∑
i∈I0

aia
H
i

‖ai‖22

)
z. (5)

Notice that (5) implies finding the smallest eigenvalue of
matrix 1

|I0|
∑
i∈I0

aia
H
i

‖ai‖22
, which calls for eigen-decomposition

or matrix inversion, and each of these operations typically
require a computational complexity O(n3) [10]. However, we
can avoid this step by manipulating (5) as follows

∑
i∈I0

aia
H
i

‖ai‖22
=

nL∑
i=1

aia
H
i

‖ai‖22
−
∑
i∈I0

aia
H
i

‖ai‖22
, (6)

where I0 is the complement of I0. Further, in order to rewrite
the term

∑nL
i=1

aia
H
i

‖ai‖22
, we proceed as follows. Observe that

‖ai‖22 =
n∑
p=1

∣∣(Dri)p,p(fui)p
∣∣2 = ‖Dri‖2F , (7)

given that F is an orthogonal matrix. Thus, from (7) we have

nL∑
i=1

aia
H
i

‖ai‖22
=

L∑
`=1

DH
` D`

‖D`‖F
. (8)

Observe that, if we assume that the set of coded apertures
satisfies

∑L
`=1 D

H
` D` = rI, from (8), it can be concluded that∑nL

i=1
aia

H
i

‖ai‖22
= cI for some constant c > 0. Thus, considering

this observation, (5) can be approximated as

z0 = arg max
‖z‖2=1

zH

 1

|I0|

∑
i∈I0

aia
H
i

‖ai‖22

 z, (9)

which meets the numerical formulation of OPI in [10]. Further,
it is important to mention that OPI was originally introduced
assuming that the sampling vectors ai follow a Gaussian
distribution. In contrast, this work derives an initialization
procedure based on OPI with the sampling vectors modeling
a realistic acquisition system. Thus, considering the previous
remarks, we theoretically establish in Theorem 1 that (9) can
approximate the signal of interest with probability of at least
1− exp(−C0n).

Theorem 1. Consider noise-free measurements (y)i =
|〈ai,x〉|2 as defined in (4), and assume that the set of coded
apertures satisfies

∑L
`=1 D

H
` D` = rI for some 0 < r ≤ L.
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Then, with probability of at least 1 − exp(−C0n) for some
constant C0 > 0, the vector z0 returned by (9) satisfies

dist(z0,x) ≤ ρ‖x‖2, (10)

for some constant ρ ∈ (0, 1), provided that m ≥ |I0|n, and
for a sufficiently large n.

Proof. See Appendix A.

In order to solve (9), the Algorithm 1 presents the power
iteration method. Observe that this method requires the sam-
pling vectors and the acquired CDP. Further, following the
iteration process in Algorithm 1, in line 7 the estimation of the
scene is calculated. In line 8, a low pass filtering process over
z̃(t+1) is accomplished. The motivation for this step comes
from the fact a scene mostly contains low frequencies [14].
Specifically, this characteristic can be exploited by suppressing
the high frequencies, in this case, by the low pass filter G. In
particular, for this work, G was fixed as the Gaussian filter. It is
worth to stress here that the main differences of the proposed
initialization respect to OPI are the inclusion of the filtering
step, and the theoretical extension to CDP. In fact, Section
IV will numerically show that performing the filtering step
is crucial to better estimate the scene with a fewer number
of phaseless measurements. Finally, Algorithm 1 returns the
scaled vector z0 as the estimation of the scene in line 11.

Algorithm 1 Scene estimation

1: Input: Acquired data {(ai; (y)i)}mi=1, the maximum num-
ber of iterations T , and a low pass filter G.

2: z̃(0) ← Chosen randomly.
3: Set I0 as the set of indices corresponding to the |I0|

largest values of {(y)i/‖ai‖2}.
4:

(ȳ)i =

{
1, i ∈ I0

0, otherwise
. (11)

5: S←
[

a1

‖a1‖2 , · · · ,
am

‖am‖2

]H
.

6: for t = 0 : T − 1 do
7: Compute z̄(t+1) ← SH

(
ȳ ◦ Sz̃(t)

)
.

8: Compute z̄(t+1) ← G
(
z̄(t+1)

)
. . Filtering step

9: Update z̃(t+1) ← z̄(t+1)

‖z̄(t+1)‖
2

.

end for
10: Compute z0 =

√∑m
i=1(y)i
m z̃(T ). . Scaling step

11: Return: z0

B. Target Detection Procedure

This section describes a target identification procedure that
follows a template matching strategy using a circular harmonic
filter (CHF) [5]. We choose this type of filter because it is
invariant to rotations [6]. Specifically, the detection step is
divided into two stages: (i) correlation analysis step based
on CHF, and (ii) decision step considering a thresholding
procedure.

1) Correlation Analysis: A circular filter using a reference
pattern has to be designed to detect a target through correlation
analysis. Correlation analysis is a metric commonly used in
TM, which calculates the similarity between a CHF and a
scene. Mathematically, the CHF based on a reference pattern
G of an object in the Fourier domain [15], can be expressed
as H(ρ, φ) = b(ρ) ◦ e2jθ where

b(ρ) =
n∑
l=1

B(ρ, (l − 1)∆φ)

|B(ρ, (l − 1)∆φ)|
e−2j(l−1)∆φ, (12)

and B = F(G). Further, it is worth to mention that matrices
B, and H are initially built in polar coordinates (r,θ).

Now, if we calculate the circular filter H(ρ, φ) in rectangular
coordinates, denoted by H(u, v), we have that the correlation
matrix C between the CHF and the reference pattern is given
by

C(u, v) = F−1
(
H(u, v) ◦ Z0(u, v)

)
, (13)

where Z0 is the Fourier transform of the estimated scene
obtained from (9).

2) Decision Process: Once the correlation matrix is cal-
culated following (13), we are able to detect a target. More
precisely, this target is identified using a threshold, defined as
the maximum absolute value of the correlation matrix multi-
plied by a tolerance parameter. Mathematically, the decision
rule for determining a target is given by

(R)k,l =

{
1, if |(C)k,l| ≥ ε ·max (C)
0, otherwise

, (14)

where (R)k,l ∈ {0, 1} represents the elements of the decision
matrix, ε ∈ (0, 1] is a tolerance parameter and max(·) is an
operator that returns an element with the largest magnitude
value. In particular, the object of interest is located at an entry
(k, l) if (R)k,l = 1.

Algorithm 2 Target identification

1: Input: Acquired data {(ai; (y)i)}mi=1, and the tolerance
ε > 0.

2: z0 ←Algorithm 1(ai;y). . Estimated scene
3: H← Creates the circular filter.
4: Compute Z0 = F{z0}.
5: Compute C = F−1{H ◦ Z0}. . Correlation step
6: R← Builds the decision matrix. . See (14)
7: Return: R

Algorithm 2 summarizes the proposed target identification
procedure. Note that Algorithm 2 requires the acquired CPD
and the tolerance ε > 0. Then, in line 2 the estimation of the
scene is evaluated from the phaseless measurements by Algo-
rithm 1. Further, in line 3 the circular filter is designed from
a reference pattern. The Fourier transform of the estimated
scene is calculated in line 4. In line 5, the correlation matrix
is computed using (13). In line 6, a target is detected using
the decision matrix described in Eq (14). Finally, the decision
matrix is returned in line 7. The computational complexity
of the detection procedure is O(n log(n)) according to the
computed correlation in the Fourier domain.
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IV. SIMULATIONS AND RESULTS

In this section, the performance evaluation of the proposed
target identification methodology is presented, under noisy
scenarios. Specifically, we test our methodology for different
values of signal-to-noise ratio (SNR), which is defined as
SNR = 20 log(‖y`‖2/‖σ‖2), with σ as the variance of the
noise. All the experiments are performed varying noise levels
as SNR ∈ {5, 10, 20, 30}[dB] and number of snapshots as
L ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Numerical tests are performed to
determine the success rate according to correct identification.
This metric is defined as the number of favorable outcomes
divided into the total number of possible outcomes. Moreover,
the accuracy of the resulting estimation using the proposed
initialization is analyzed by calculating the relative error
between the original scene and its estimation. The relative
error is defined as dist(w,x)/ ‖x‖2.

Furthermore, the discrete random variable d, that we used
for all the experiments to build the set of coded apertures is
given by d = {j,−j, 1,−1}. Notice that d trivially satisfies
the assumption over the set of coded apertures required in
Theorem 1. All the experiments are performed over the
magnitude and phase of three different objects, as shown in
Fig. 2. These scenes were acquired using a structured light
testbed that allows the optical phase estimation of the object.

Toy Pear Apple

M
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P
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Fig. 2: Magnitude and phase of three different objects acquired
through a structured light testbed.

A. Scene Estimation Results

Here, we compare the performance of the proposed initial-
ization via Algorithm 1 with maximum number of iterations
T = 200 against some traditional initializations such as
orthogonality-promoting initialization (OPI) [10], weighted
maximal correlation initialization (WMCI) [11] and truncated
spectral initialization (TSI) [12]. Specifically, Fig. 3 presents
a comparison of the relative error, we take an average of 100
runs of the estimated scenes obtained from the proposed and
traditional initializations, for different noise levels, and number
of snapshots. Note that the proposed estimation presents the
lowest relative error compared to the traditional estimations
for all the number of snapshots and noise levels. The proposed
initialization is able to appropriately estimate a scene using a
single snapshot L = 1, while OPI, WMCI and TSI approaches
require at least L = 7, L = 4 and L = 7, respectively, to
estimate a scene.
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Fig. 3: Summary of the relative error using different initialization
strategies, noise levels, and number of snapshots.
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Fig. 4: Target identification methodology using the proposed esti-
mation and WMCI approach with number of snapshots L = 1 and
L = 4, respectively, for two different scenarios with SNR = 30[dB].

B. Target Identification Results

In this section, we evaluate the ability of the proposed
methodology to correctly detect a target via Algorithm 2 with
tolerance ε = 0.9. To do that, we test our approach under two
different scenarios, as illustrated in Fig. 4. Specifically, the
first scenario is composed of four objects (toy objects) with
the same magnitude information, with two of them containing
non-constant phase information. The second scenario contains
four objects (two pear objects and two apple objects), with
three of them containing non-constant phase information. In
particular, in the first and second scenarios, we are interested
in identifying the toy object, and the apple object with phase
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information, respectively, which are inside highlighted circles
as illustrated in Fig. 4. Notice that from the results shown in
Fig. 4, it can be concluded that the identification methodology
is able to detect a target using the proposed estimation from a
single snapshot, while the proposed identification methodology
using WMCI approach requires at least four snapshots to
correctly detect the target. The high-intensity zones in the
correlation matrix suggest the presence of the target, then, the
decision is computed using a thresholding approach over the
correlation matrix as (14).

Finally, Fig. 5 displays the success rate using different
estimations for the proposed target identification method. In
these experiments, we assume that the measurements are cor-
rupted by white noise. Specifically, we test our methodology
under different noise levels and different number of snapshots.
Observe that these numerical results suggest that a single
snapshot is enough to identify a target with a success rate of
up to 84% using the proposed estimation method, even when
the noise level increases.
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Fig. 5: Summary of the success rate according to the correctly
target identification using the proposed methodology by different
initializations with different noise levels and number of snapshots.

V. CONCLUSIONS

A target identification methodology based on TM from CDP
was presented. This methodology is composed of two stages:
first, an estimation of the scene is accomplished through a
proposed initialization procedure, second, a scanning operation
with a reference pattern over the estimated scene is performed
using matrix correlation analysis. Further, this methodology
uses the optical phase information of an object as an iden-
tification discriminant for target detection tasks. Simulation
results show that the proposed detection methodology is able
to identify a target using one single snapshot with a success
rate of up to 84%, even in highly noisy scenarios. In fact,
from the numerical tests, it can be concluded that the proposed
initialization method requires less number of measurements
to better estimate the scene than state-of-the-art initialization
approaches.
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APPENDIX A
PROOF OF THEOREM 1

In this section, we give a brief description of the proof
because of limited space. However, for an interested reader,
the complete proof can be found in [16]. Then, assuming that

1

2
‖xxH − z0z

H
0 ‖2F ≤

‖Su‖22
‖Sx‖22

≤ 0.99|I0|2c2

4n4
:= κ < 1,

(15)

holds true, where S =
[

a1

‖a1‖ , · · · ,
a|I0|
‖a|I0|‖

]H
, and

u = − sin(θ)z0 + cos(θ)z⊥0 . Then, considering that sin2(θ) =
1− cos2(θ) ≤ κ, we obtain that

dist2(x, z0) = ‖x‖22 + ‖z0‖22 − 2 cos(θ)

≤ 2(1−
√

1− κ). (16)

Thus, from (16) we have that dist2(x, z0) < 1, which
concludes the proof.
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