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Abstract—The loudspeaker is a transducer that converts elec-
trical signals to sound. However, it is well-known that in reverse
mode, it can convert sound to an electrical signal. In this paper,
the reverse mode behavior is investigated through the analysis of
its influence on urban sound classification accuracy by comparing
the results of deep learning based classifiers. As no audio datasets
recorded by loudspeakers are available, a popular traditional
dataset was used and transformed into forms as they would have
been recorded by reverse mode speakers. These transformations
simulated the loudspeakers’ electrical responses to acoustical
excitation signals based on their reverse mode transfer functions,
which were derived from equivalent mechanical circuits. The
details of this reverse mode modeling are also included. The
transformed datasets were used during the trainings of the
classifiers, and the effects of different speaker parameters and
noise levels were examined and compared. The results showed
that smaller, full-range speakers performed better than bigger
woofers. The types of well-classified events revealed that loud,
impulsive events could be classified more accurately.

Index Terms—loudspeaker, reverse mode, sound classification

I. INTRODUCTION

Loudspeakers are transducers that convert electrical sig-
nals to sounds. However, in reverse mode, they can convert
acoustical signals to electrical signals as microphones do. This
property is well-known and one could easily find descriptions
about how to use speakers as microphones [1], [2]. The current
paper investigates the reverse mode behaviour of speakers by
analyzing their performance in an audio classification task.

In academic literature, the only recent related work was
published by Guri et al. in [3]. They developed a proof-
of-concept malware, named Speake(a)r that allowed using
headphones as microphones by port retasking, which could
be realized silently on any computer containing Realtek audio
CODEC chips. The software altered the functionality of output
ports and turned them into input ports. Thus, a headphone
connected to the output line became an input device. They also
carried out experiments and recorded normal conversations
from close ranges with acceptable quality, therefore showed
that eavesdropping and cyber attacks would be feasible.

Based on their results, the question arises: Would it be
possible to use loudspeakers (not headphones) for “good”? For
example, in security applications, where suspicious acoustical
event detection is important while protecting privacy. In this
paper, moving-coil loudspeakers are investigated as input
devices for automated urban sound classification. Only passive
speakers - without built-in amplifiers - are examined, as the

voltage generated in reverse mode cannot reach the driving
cable in active speakers.

The loudspeaker based audio recording is sub-optimal
compared to the microphone based solutions. However, if a
deployed system already contains multiple, spatially separated
but connected passive speakers that are driven by the same
source, the whole area could be protected by monitoring
the driving cable with only one device. This setup can be
found in schools, stations, hospitals, etc., where the speakers
broadcast announcements. The other advantage comes from
the structure of the loudspeakers. As they are designed to
radiate, not to record sound, their sensitivity is low in reverse
mode. The signal-to-noise ratio is therefore reduced, disabling
their usability in potential spying attacks.

Contributions: The introduction of the reverse mode model-
ing of loudspeakers, which has not been presented before; and
the utilization of this model to simulate the speakers’ responses
to various acoustical inputs. The effect of the reverse mode
on the audio classification accuracy is examined by using a
labeled urban sound dataset and convolutional neural network
based classifiers.

II. SPEAKER MODELS

A moving-coil speaker contains a suspended coil, which is
placed in a gap between permanent magnets. When alternating
current flows through the wire, force is being induced that
moves the coil and the attached diaphragm, the cone, back
and forth. That rapid movement of the cone generates pressure
waves in the air.

a) b)
Fig. 1. Cross-section of a moving-coil loudspeaker (a), and its equivalent
mechanical mass-sprint-damper model (b).
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The cross-section of a loudspeaker can be observed in
Fig. 1.a. The explained structure can be approximated by a
mechanical mass-spring-damper system presented in Fig. 1.b,
where MMD is the mass of the moving parts, CMS is the
compliance of the suspension and RMS is responsible for the
additional losses.

A. Equivalent Circuit of the Moving-coil Loudspeaker

In this section, the loudspeaker’s electrical equivalent circuit
and the steps required to obtain it are summarized. These
results are well-known in the literature [4]–[7], however, the
outline is presented here as it will help the reader to understand
the concept of reverse mode modeling.

The loudspeaker is driven in the electrical domain that
induces mechanical force, which moves the cone, producing
waves in the acoustical domain. This complex system can be
modeled with an equivalent circuit presented in Fig. 2.a by
using electrical impedance, mechanical mobility and acoustical
impedance [4], [7].

In Fig. 2.a, a voltage generator with neglected output
impedance models the driving source of the loudspeaker.
The coil resistance, Re is represented by a resistor while its
inductance is negligible at the relevant sound frequencies.

It is known that the force on the coil is given by the product
of the flux density in the gap, B (T), the length of the coil wire
l (m) and the current (A). Therefore the constant that connects
the electrical and mechanical domain is the Bl product. This
parameter is usually given in the loudspeakers’ datasheets.
The force generation and impedance transformation can be
modeled by a virtual transformer with turn ratio of Bl:1. The
impedance connected to the secondary of this transformer is
reflected back to the primary side by this Bl ratio.

In the mechanical domain, the mechanical mobility (the
inverse of the mechanical impedance) is used to model the
mass MMD, the compliance CMS , and the losses GMS of
the mass-spring-damper system.

The air load has two main parts, the reactive (CA) and the
resistive (RA) parts. The radiated sound energy (dissipated
on RA) is proportional to the square of the diaphragm area
S. This load modeled by applying the mechanical velocity to
the primary of another virtual transformer with turn ratio of
S, as shown in Fig. 2.a. On the secondary side, the voltage
is proportional to the volume velocity U and the current is
proportional to the sound pressure P .

The first transformer can be eliminated by bringing the
mechanical load to the primary side with impedance inversion
and conversion. The second transformer can be eliminated in
the same way, but it does not invert the impedance. After these
eliminations, the equivalent circuit will be transformed into
the electrical domain, where all the components are replaced
by equivalent electrical ones. This simplified model can be
observed in Fig. 2.b. The detailed description can be found in
[4], [7].

The parameter values of the model can be calculated from
the well-known Thiele-Small parameters [8]. These electrome-
chanical parameters define the low-frequency behavior of a

a)

b)
Fig. 2. Equivalent circuits of a moving-coil speaker [7]. In (a), virtual
transformers are used to represent the mechanical force generation and
acoustical energy radiation. In (b), these transformers are eliminated by
impedance conversion, and the loads are transformed into the electrical
domain.

speaker unit and usually are used for enclosure design. They
are measured and published by the speaker manufacturers. The
complete list of the Thiele-Small parameters and the relations
with the values required by the model in Fig. 2.b can be found
in [8], [9].

B. Equivalent Circuit of the Reverse Mode

When an external pressure signal is applied on the surface
of the diaphragm, it starts vibrating, and the attached coil
oscillates in the magnetic field. According to Faraday’s law
of inductance, voltage is generated in the coil. This can be
modeled in the same way as it was presented in Fig. 2.a, but
the driving source is moved into the acoustical domain. As
the measurement of the reverse mode voltage is required, the
electrical voltage generator is replaced by a resistor, which
represents the input impedance RO of a voltage meter or
operational amplifier. The resulting circuit can be examined in
Fig. 3.a. The acoustical domain resistance and reactance are
eliminated as the driving pressure directly acts on the surface
of the diaphragm. The mechanical domain model remains the
same, but the excitation comes from the other direction.

To simulate a speaker’s response to a given acoustical
signal, the model is converted into the mechanical domain
by eliminating the two virtual transformers. The resistance of
the coil, Re is negligible compared to the input impedance of
the voltage meter (Re << RO), therefore it is omitted.

The acoustical driving source is a volume velocity signal.
The relation between this signal and the mechanical velocity
of the diaphragm is determined by the surface area of the
cone, the transmission coefficient of the cone material and the
shape of the cone. The exact description is complex, but an
approximation can be made, as the U volume velocity can be
brought to the other side of the virtual transformer by using the
turn ratio. This step is simplified here as the original intensities
of the acoustical input signals are unknown, thus the exact
simulation is impossible.

In Fig. 3.a, mechanical mobility was used to represent
the mechanical components. This part of the circuit can be
replaced by its dual mechanical impedance type analogy. The
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a)

b)
Fig. 3. Equivalent circuits of the reverse mode. In (a), virtual transformers are
used to represent the force and electrical signal generation steps. The driving
source is moved to the acoustical domain. The electrical output signal can
be measured on RO . In (b), the simplified mechanical equivalent circuit is
presented after the elimination of the virtual transformers. The elements are
transformed into the mechanical domain by using mechanical impedance.

dual components then form an equivalent single loop circuit
with elements connected in series. This circuit is presented
in Fig. 3.b. The output signal is the velocity drop across the
impedance converted resistor RO.

From the simplified equivalent circuit, the reverse mode
transfer function of a loudspeaker can be derived as:

H(s) =
ROCMS · s

MMDCMS · s2 + (RO +RMS)CMS · s + 1
.

The parameter values, as in the previous section, can be
calculated from the available Thiele-Small parameters. The
band-pass filter nature of the derived transfer function can be
observed in Fig. 5, where three different speakers’ simulated
reverse mode transfer functions are presented. (Details are
explained in Section III.) These are similar to the measured
electrical impedance curves usually included in the speakers’
datasheets. This similarity is reasonable as the impedance
seen by the electrical driving unit is also dominated by the
mechanical properties of the speakers. These transfer functions
will be used to simulate the speakers’ responses to various vin
acoustical excitation signals.

III. METHODS

The paper investigates the behavior of loudspeakers in
reverse mode and examines the classification performances in
cases when they are used as microphones to record sounds.
A labeled urban sound dataset was used during the tests
and - by using the derived reverse mode transfer functions
- it was transformed into forms, as they would have been
recorded by loudspeakers. These transformations were carried
out with different speakers and with different noise levels. The
classification algorithm is based on a deep learning approach.
This section describes the applied methods, and the results are
discussed in Section IV.

A. Reverse mode simulation

It is possible to record sounds with speakers, however, no
dataset is available to evaluate their effect on the recorded

Fig. 4. Block diagram of the reverse mode simulation. The input files came
from an urban sound dataset, and the responses to these acoustical signals
were simulated by using the speakers’ transfer functions. The final outputs
were produced by adding noise to the response signals.

signals. Therefore, a dataset recorded by microphones was
used and the responses of speakers to these inputs were
simulated by using their reverse mode transfer functions H(s).

The original sound pressure levels (SPLs) of the input
recordings and the amplification factors, microphone types,
etc. were unknown, thus no exact simulation was possible. To
simulate the effect of different input intensities, noises with
different power levels - no noise, -10dB, -30dB, -40dB - were
added to the transformed signals. High noise power lowers the
SNR, thus lower input sound intensities were simulated. White
Gaussian noise was applied with zero mean and the variance
was set according to the required noise power level. The block
diagram of the simulation step is presented in Fig. 4.

B. Data

A dataset called UrbanSound8k was used [10]. This dataset
contains 8732 labeled sound excerpts (≤ 4s) of urban sounds
from 10 classes: air conditioner, car horn, children playing,
dog bark, drilling, enginge idling, gunshot, jackhammer, siren,
and street music. The dataset is organized into 10 folds.

The audio files had various lengths, sample rates, bit-
depths and number of channels. To unify these parameters,
all of the recordings were converted to a single channel,
16-bit format with a sample rate of 22.05 kHz. First, each
signal went through the reverse mode simulation and then
they were split into overlapping segments with lengths of
0.95 s. The same preprocessing was carried out in [11], [12].
Each segment of a signal received the original signal’s label.
These labeled, transformed segments were used during the
classification phase.

C. Urban Sound Classification

Modern classification algorithms rely on deep learning and
neural networks. The best results were achieved by using these
methods in the field of sound classification too [13]. Convo-
lutional neural networks (CNN) are commonly used, which
process their input data (mainly images, or multidimensional
data) by successive convolution steps, and the kernels of these
filters are formed during the training phase [14].

In this paper, a CNN was used to perform the classification
task. The structure of the network is similar to the one
published in [15]. The input format was changed; log-scaled
mel-spectrograms were used as it was presented in [11], [12].
The neural network structure and the training process were
implemented in Keras [16].
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Fig. 5. Reverse mode transfer functions of three different loudspeakers. The
band-pass filter nature of the curves can be observed. Amplifications were
applied to set the magnitudes of the transfer functions to unity at the resonance
frequencies.

Three different speakers were tested with 5 cm (Speaker 1,
full-range [17]), 10 cm (Speaker 2, full-range [18]) and 20 cm
(Speaker 3, woofer [19]) cone diameters. Based on their
published Thiele-Small parameters, their reverse mode transfer
functions were calculated and are presented in Fig. 5. The
whole audio dataset was transformed four times per speaker
with the four noise power levels described earlier. That resulted
in 12 transformed datasets.

The CNN was trained on the 12 transformed datasets
separately until convergence (early stopping was employed
based on validation loss). From the datasets, 8 folds were used
for training, 1 for validation and 1 for testing. To simplify
the training method, instead of the required 10-fold cross-
validation scheme, only one training was carried out on each
dataset with the same folds selected for training, validation
and testing ([1,8], 9, 10 respectively). Thus the results are
comparable and do not require the 10× repetition of the
training process on each dataset. The baseline accuracy was
determined similarly without the reverse mode simulation step.
The optimal learning rate parameter of the training procedure
was determined on the baseline system first, and then the
same value was used during all the other trainings. Further
optimization could be made in each separate case, which might
increase the accuracy, however, these results are beyond the
interest of the current paper.

IV. RESULTS

Loudspeakers are sub-optimal microphones, therefore it is
foreseeable that their performance affects the classification
accuracy negatively. Table I summarizes the resulting accu-
racies (true positives/all samples) in all the tested cases. The
accuracy on the original dataset was 70%, which seems close
to the state-of-the-art [12], however, no exact comparison can
be made, because the 10-fold cross validation scheme was
violated in this work. Still, the results are comparable within
the table, since all the trainings and testings were carried out
on the same, but differently transformed datasets.

It can be examined in Table I that the speakers’ perfor-
mances are at least with 9% worse than the baseline accuracy.
This is mainly originated from the nature of the reverse mode
frequency response. It is noticeable that the higher the diameter
and lower the resonance frequency, the lower the classification
accuracy becomes. Speaker 1 achieved the best performance,
which can be explained by its highest resonance frequency,
thus relevant frequencies are less attenuated.

TABLE I
ACCURACIES OF THE TRAINED CLASSIFIERS. IN THE COLUMNS THE NOISE

LEVELS AND IN THE ROWS THE BASELINE SETUP AND THE DIFFERENT
SPEAKERS ARE PRESENTED.

No noise
added

Noise:
-40dB

Noise:
-30dB

Noise:
-10dB

Original 70% - - -
Speaker 1 61% 60% 60% 50%
Speaker 2 56% 54% 55% 42%
Speaker 3 56% 58% 53% 32%

The noise level also had an impact, however, it was not
necessarily negative in reasonable ranges (-40dB, -30dB). This
is not surprising; adding noise to signals is a commonly used
data augmentation method [15]. At -10dB noise power level,
most of the input signals fell in the range of the noise, therefore
only loud events were classified correctly.

To investigate the details of the accuracy drops caused by the
reverse mode speakers, in Fig. 6 the difference between two
confusion matrices are presented: (baseline matrix - Speaker 1,
no noise matrix). In the resulting matrix, the positive numbers
on the diagonal represent the number of miss-classified events
compared to the baseline classifier. Interestingly, the loud,
impulsive events like gunshots, dog bark, and car horn were
well-classified with the reverse mode speaker based classifier
as well. Most of the error came from the less intense events
with periodic nature like drilling, air conditioner, and engine
idling. With the high frequencies attenuated, these periodical
events produced similar spectrograms, therefore misled the
classifier.

To better illustrate the nature of well-classified sounds,
Table II presents the top 3 best performing classes in each
test cases.

As it can be observed in Table II, events with high SPL
and transient nature were more distinguishable by reverse
mode speakers. For example, Speaker 1, a full-range speaker,
preserved enough information to enable high gunshot detection
accuracy. In all the cases, the music events were usually
classified correctly, mainly because of their variant nature

Fig. 6. The results of the baseline classifier trained on the original dataset
are compared to the results of a classifier trained on a transformed dataset by
illustrating the difference between their confusion matrices.
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TABLE II
BEST PERFORMING CLASSES IN THE EXAMINED TEST CASES.

No noise
added

Noise:
-40dB

Noise:
-30dB

Noise:
-10dB

Orig.
jackh.(93%)
gunsh.(85%)
car h.(81%)

- - -

Sp. 1
gunsh.(91%)
music(82%)
jackh.(73%)

gunsh.(89%)
music(79%)
dog b.(71%)

gunsh.(89%)
music(82%)
car h.(74%)

jackh.(73%)
music(67%)
car h.(63%)

Sp. 2
music(73%)
jackh.(69%)
drill(68%)

music(78%)
gunsh.(72%)
drill(68%)

jackh.(78%)
music(72%)
dog b.(70%)

jackh.(66%)
music(60%)
dog b.(59%)

Sp. 3
jackh.(74%)
music(73%)
dog b.(63%)

music(74%)
jackh.(73%)
dog b.(66%)

jackh.(74%)
music(68%)
dog b.(64%)

engi.(59%)
music(41%)
air c.(38%)

both in the frequency and in the time domains. However,
most of the falsely categorized samples ended up in this
class as well. As speakers with bigger cone diameters tend to
attenuate higher frequencies more, the impulsive events lost
their transient nature, therefore got miss-classified more times
in these situations.

A. Discussion

From the classification results, it can be concluded that
reverse mode speakers could be used for event detection.
However, the type and nature of these events are limited.
For example, reliable speech recognition could hardly be
achieved because of the low sound pressure levels. At the
same time, loud, impulsive events like gunshots, explosions,
screaming, etc. could be detected with sufficient accuracy. The
other limiting factor is the speakers’ type. Woofers and sub-
woofers have lower resonance frequencies, therefore attenuate
the relevant part of the spectrum more. This restriction is less
critical, as typically full-range speakers are used in everyday
applications.

V. SUMMARY AND FUTURE WORK

In this paper, the reverse mode (microphone mode) of
loudspeakers was investigated in terms of urban sound classi-
fication performance. A reverse mode equivalent circuit and
the corresponding transform function were derived from a
well-known electrical equivalent circuit. These transfer func-
tions were employed to simulate the speakers’ responses to
acoustical excitation signals. The model parameters can be
calculated easily from manufacturer datasheets. Three different
speakers were modeled and their effect on the classification
accuracy were examined and compared. A labeled urban sound
dataset and its transformed versions served as the input of
the classification, which was carried out by a state-of-the-
art neural network based classifier. The sound pressure level
uncertainty of the original dataset was handled by adding
noises with different power levels to the data.

The results suggested that loudspeakers could be used for
event detection, however only loud, impulsive events like gun-

shots, explosions, screaming, etc. could be detected accurately
by full-range speakers.

Based on the results, the research will continue in two
directions in the future. First, investigating the possibility of
designing ’smart speakers’, which could detect events in their
inactive state, while preserving privacy. The other direction
is to examine the event detection capabilities during active
state – when the speaker is being actively driven by electrical
signals.
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