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Abstract—We propose a robust likelihood ratio test to detect
landmines using forward-looking ground penetrating radar. In-
stead of modeling the distributions of the target and clutter
returns with parametric families, we use a kernel density esti-
mator to construct a band of feasible probability densities under
each hypothesis. The likelihood ratio test is then devised based
on the least favorable densities within the bands. This detector
is designed to maximize the worst-case performance over all
the feasible density pairs and, hence, does not require strong
assumptions about the clutter and noise distributions.

Index Terms—Forward looking ground penetrating radar,
landmine detection, robust probability ratio test, band model.

I. INTRODUCTION

A forward-looking ground penetrating radar (FL-GPR) of-
fers the potential of detecting landmines and unexploded
ordnance with reduced risk to the operator [1]–[4]. This is ac-
complished with a large standoff distance between the detector
and the targets, rendering it an attractive option compared to
a conventional downward-looking radar that incurs the chance
of disturbing and damaging the target scene. However, a
challenge of using FL-GPR is that the illuminating signals and
the reflected signals experience substantial attenuation owing
to the near cancellation of the direct and ground-reflected
waves. Furthermore, the interface roughness and subsurface
clutter, which are usually highly non-stationary, have a strong
impact on FL-GPR. Hence, in order to reduce the probability
of detection errors, these effects need to be compensated with
a proper signal processing method.

In this paper, we propose a pixel-wise likelihood ratio test
(LRT) to detect landmines in the image domain. In contrast to
existing approaches, we design the test to be robust against
statistical model deviations [5]. More precisely, instead of
modeling the distributions of the pixel intensity under each
hypothesis with a parametric family of distributions, we use
training data to construct two feasible bands within which
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Fig. 1: Schematic of the FL-GPR vehicle-based system.

the probability density functions (pdf) under either hypothesis
are assumed to lie. The detector is then designed such that
it minimizes the maximum error probability for all possible
density pairs within the two bands. The existence of a minimax
optimal test for this uncertainty model has been shown in [6]–
[8]. The reason for following this approach is that accurate
estimation of the clutter distribution, given its non-stationary
behavior, is highly challenging. The proposed robust approach
overcomes this problem since it does not require high estima-
tion accuracy and is guaranteed to perform well over an entire
non-parametric set of possible distributions.

II. FL-GPR SYSTEM & MEASUREMENT CONFIGURATION

We work with numerical data simulated using the
Near-Field Finite-Difference Time-Domain software package,
NAFDTD, developed by the U.S. Army Research Laboratory
(ARL) [2]. Fig. 1 illustrates the FL-GPR system equipped
with a 2m antenna array mounted on top of a vehicle at the
approximate height of 2m. The antenna array is composed
of two transmit elements (blue dots) placed at the ends and
16 uniformly spaced receive elements (red line). The FL-GPR
system operates in forward-looking mode from x = −20m
to x = 11m, sensing the investigation area at grazing angle
θg ∈ [5°, 20°] approximately with a stepped frequency signal
covering the 0.3 – 1.5GHz band in 6MHz increments.

Fig. 2 depicts the measurement configuration considered in
the simulation. The investigation area contains nine landmines.
Six landmines are buried at a depth of 3 cm, five of them
are metallic land-mines (1, 3, 4, 6, 7) and one is made of
plastic (9). The remaining targets, two plastic land mines (2
and 8) and a metallic one (5), are placed on the surface. The
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Fig. 2: The FL-GPR measurement configuration. The investigation area (blue rectangle) contains nine targets. The first image
segment (dashed rectangle) is constructed by integrating eight full aperture measurements (red lines). Landmines: {1} metallic
anti-personnel, {2,8} plastic anti-personnel, {3,6,7} metallic 155mm shell, {4,5} metallic anti-tank, {9} plastic anti-tank.

plastic landmines are characterized with the relative dielectric
constant εr = 3.1 and conductivity σ = 2mS /m. The
ground is modeled as a dielectric medium which is non-
dispersive, non-magnetic, and homogeneous with εr = 6 and
σ = 10mS /m. The surface roughness is described as a 2-
D Gaussian random process parameterized by the root mean
square height hrms = 0.8 cm and the correlation length lc =
14.26 cm [3].

We consider a total of 90 measurement positions depicted as
parallel lines in Fig. 2. A full aperture measurement is realized
over two adjacent measurement positions. In each position, we
activate only one transmit element while all receive elements
record the reflected signal from the scene. We obtain an image
segment by integrating eight full aperture measurements. As
an example, the 16 lines show the positions of eight full
aperture measurements from −19.33m to −5m which are
used to construct the first image segment (dashed rectangle).
The second, third, and fourth image segments are obtained
by integrating full aperture measurements from −15.33 to
−1m, −11.33 to 3m, and −7.33 to 7m respectively, which
however, are not depicted in Fig. 2. A tomographic image is
thus constructed by integrating 32 full aperture measurements
from x = −19.33m to x = 7m and is shown in Fig. 3.

The image in Fig. 3 is normalized to 40 dB dynamic
range and consists of Nx = 1153 pixels in downrange and
Ny = 721 pixels in crossrange with a resolution of 5 cm.
The landmines located near the boundary of the investigation
area are less apparent since they are outside of the antenna’s
main lobe; the physical aperture width is shorter than the
image crossrange (y-dimension). Compared to the landmines
placed on the surface, the buried landmines are generally
more challenging to discern due to the clutter caused by the
radar back-scatter from the rough ground surface. In general,
recognizing a plastic landmine is harder than a metallic one,
since its return signal energy is comparable to that of the
clutter. In order to improve the detection performance, we
generate ten additional images by successively moving the
radar closer to the target area. Compared to the image in
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Fig. 3: Tomographic image from the first viewpoint.

Fig. 3 corresponding to the farthest viewpoint, the tomographic
image from the viewpoint closest to the scene is realized by
integrating measurements from x = −16m to x = 10.33m.
Therefore, we have M = 11 tomographic images available
from various viewpoints to perform the LRT.

III. IMAGE DOMAIN LIKELIHOOD RATIO TEST

A tomographic image is represented as a two dimensional
array of normalized pixel intensities

x(i, j), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

where x(i, j) ∈ [0, 1]. The detection problem is to decide
whether a pixel at (i, j) belongs to a target or is clutter.
The problem can be defined as a test between a null and an
alternative hypotheses as follows

H0 : x(i, j) = clutter pixel,
H1 : x(i, j) = target pixel.

The proposed robust test, as well as the existing parametric
LRT [3], [4], which is used as a reference for comparison, are
based on the Neyman–Pearson approach [9] to optimal test
design. That is, the test is designed such that it minimizes the
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miss detection (type II error) probability under a constraint
on the false alarm (type I error) probability. In other words,
it minimizes the probability of confusing a target pixel for
a clutter pixel for a given probability of confusing a clutter
pixel for a target pixel. In order to highlight the similarities
and differences between the parametric and the robust LRT,
we briefly summarize the former before detailing the latter.

A. Parametric Test

Under the assumption that the tomographic images from dif-
ferent viewpoints are independent and identically distributed,
a pixel wise LRT is given by

L(i, j) =
M∏
m=1

p1(xm(i, j))

p0(xm(i, j))

H1

≷
H0

γ, (1)

where pk(xm(i, j)) are the conditional probability density
functions of the m-th tomographic image under hypotheses
Hk, k = 0, 1. The threshold γ is determined based on the
false alarm constraint α

α =

∞∫
γ

fL(l|H0) dl, (2)

where fL(l|H0) is the density of the likelihood ratio L under
the null hypothesis. In [3], [4], the authors show that the
pixel intensities approximately follow a Rayleigh distribution
under H0 and a Gaussian mixture distribution under H1. The
corresponding density functions are given by

p0(x) = x /σ2
0 · exp (−x /2σ2

0),

p1(x) =
K∑
n=1

ωnN (x | µn, σ2
n),

(3)

where N (• |µ, σ2) denotes a Gaussian distribution with mean
µ and variance σ2, K is the number of Gaussian distributions
in the mixture, and ω1, . . . , ωK are mixture weights. Based on
this model, the authors in [3], [4], [10] propose a generalized
LRT, i.e., the test statistic in (1) is evaluated by replacing all
unknown parameters in (3) with their maximum likelihood
estimates.

B. Robust Test

The idea of minimax robust hypothesis testing is to design
a test such that it works well under all feasible distributions.
That is, in contrast to the generalized LRT, which tries to
reduce the uncertainty by estimating unknown parameters, a
minimax robust test tolerates uncertainty.

We start by considering the general case of two composite
hypotheses

H0 : P ∈ F0,

H1 : P ∈ F1,
(4)

where F0 and F1 are two disjoint sets of feasible distributions
which are chosen such that they adequately capture the dis-
tributional uncertainties of the underlying detection problem.
Here, we use Kassam’s band model for this purpose, which

Algorithm 1 Iterative procedure to calculate the least favorable densities
Input: p′0, p

′′
0 , p

′
1, p

′′
1 , g

0
0 , g

0
1 , δ

1: i← 0

2: while true:
3: a0 ← root of f0(a; gi1)
4: gi+1

0 ← min {p′′0 , max {a0 gi1, p′0}}
5: a1 ← root of f1(a; gi+1

0 )

6: gi+1
1 ← min {p′′1 , max {a1 gi+1

0 , p′1}}
7: if ‖gi0 − g

i+1
0 ‖ < δ and ‖gi1 − g

i+1
1 ‖ < δ then

8: break
9: gi0 ← gi+1

0 , gi1 ← gi+1
1 , i← i+ 1

Output: gi0, gi1

is a generalization of the ε-contamination model [11] and has
been shown to provide a good trade-off between flexibility and
tractability [6], [7]. It is given by

F0 = {p0 | p′0(x) ≤ p0(x) ≤ p′′0(x) },
F1 = {p1 | p′1(x) ≤ p1(x) ≤ p′′1(x) },

(5)

where p′k and p′′k denote lower and upper bounds on the true
density, respectively. For the problem at hand, the bounds need
to be non-negative functions satisfying

∫ 1

0
p′k(x) dx ≤ 1 ≤∫ 1

0
p′′k(x) dx, k = 0, 1, but can otherwise be chosen freely by

the test designer.
In principle, a minimax robust test is designed by finding a

pair of densities (g0, g1) ∈ F0 × F1 that is least favorable
in the sense that it simultaneously maximizes both error
probabilities among all feasible densities. If such a pair exists,
the corresponding minimax optimal test can be shown to be a
threshold test whose test statistic is the likelihood ratio of least
favorable densities [7], [11]. In [7], it is shown that the least
favorable densities (LFDs) for the band model can in general
be written as

g0(x) = min {p′′0(x) , max {a0 g1(x), p′0(x)}},
g1(x) = min {p′′1(x) , max {a1 g0(x), p′1(x)}},

(6)

where the two constants a0 and a1 have to be calculated such
that the LFDs are valid densities, i.e., they integrate to one.
Based on the procedure outlined in [7], an iterative algorithm
to construct the LFDs is given in Algorithm 1. Starting with
an initial guess for the LFDs (g00 , g01), the algorithm alternately
updates gi0 and gi1 by finding a root of

fk(a; g) =

∫
min{p′′k(x), max{a g(x), p′k(x)}} dx− 1, (7)

which, for a given density g, is a non-decreasing function of
the scalar a. The iteration is terminated once both densities
have converged within a tolerance δ.

Having calculated the LFDs, the robust LRT is then of the
form (1), with the parametric densities (p0, p1) replaced by the
LFDs (g0, g1).

IV. NUMERICAL RESULTS

In order to obtain the parameter estimates and density bands
required to perform the two LRTs discussed in the the previous
section, we use two training images named as A1 and A2
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Fig. 4: (a) Parametric densities (p0, p1) and the constructed
band model given in (9). (b) The likelihood ratio in logarithmic
scale: parametric model (black), robust model (red).

generated by the NAFDTD software. The training image A1

is a clutter-free tomographic image obtained from a nine-target
scenario with flat ground surface. Given the center points of
the nine target positions, we obtain a set of target pixels X1 by
employing a region growing algorithm [12] to locate the target
pixels in the training image A1. From the training image A2,
which is a target-free tomographic image in the presence of
rough ground surface, we obtain a set of clutter pixels X0. For
the parametric LRT, the sets X0 and X1 are needed to obtain
maximum likelihood estimates for the parameters of p0(x)
and p1(x) in (3). The Rayleigh parameter is obtained as σ̂0 =
0.024 and the 3-component Gaussian parameters are obtained
as ω̂n = {0.603, 0.210, 0.186}, µ̂n = {0.118, 0.393, 0.808},
σ̂n = {0.051, 0.054, 0.105}. The resulting parametric density
estimates are shown in Fig. 4a.

For the proposed robust detector, we construct the density
bands via bootstrapping [13] and kernel density estimation.
By bootstrapping the training data sets X0 and X1, we collect
B new data sets {X̃01, . . . , X̃0B} and {X̃11, . . . , X̃1B}. A
kernel density estimator with a Gaussian basis function is then

applied to each bootstrapped data set as follow

p̂(X̃kl) =
1

Nh
√
2π

N∑
n=1

exp
(
−
(
x−yn
4h

)2)
, ∀y ∈ X̃kl, (8)

where k ∈ {0, 1}, l ∈ {1, ..., B}, N is the number of elements
in the data set X̃kl, and the smoothing parameter h needs to be
chosen by the test designer. Here, we use the cross validation
maximum likelihood method [14]. Subsequently, the lower and
upper bounds in (5) are determined as the point wise minimum
and maximum of all density estimates, i.e.,

p̂′k(x) =min {p̂(X̃k1), p̂(X̃k2), ..., p̂(X̃kB)},
p̂′′k(x) =max {p̂(X̃k1), p̂(X̃k2), ..., p̂(X̃kB)}.

(9)

For our experiments, we calculate, under each hypothesis,
B = 500 bootstrap estimates of the densities by randomly
drawing (with replacement) N = 400 samples from the
original data sets (X0, X1). This results in the density bands
shown in Fig. 4a. As can be seen, almost all parts of the
parametric densities lie inside the bands. We, hence, conjecture
that under ideal conditions the pixel distribution indeed follows
the parametric model; however, the actual measurements can
contribute some random deviations of the distributions.

Given the density bands, the LFDs (g0, g1) are iteratively
constructed using Algorithm 1. We set the initial densities
(g00 , g01) to 1.1 times their lower bounds (p̂′0, p̂′1), respectively.
The iteration is terminated at the tolerance value δ = 0.001.
The log-likelihood ratio of the LFDs is shown in Fig. 4b.
Compared with the case of no uncertainty (parametric model),
the robust test statistic does not show a sharp increase for
higher intensity values, but admits a large plateau of moderate
significance values at approximately 0.124 ≤ x ≤ 0.745. A
high significance is only attributed to intensity values that
exceed this range. This type of robust test has also been
observed in [15] and [7], where it is shown that it corresponds
to uncertainty sets that allow for smooth variations of the
shapes of the distributions, but no gross outliers, which is the
case for the given training data. In order to take outliers into
account as well, we can let p′′0 , p

′′
1 → ∞, turning the band

model into the ε-contamination model [7], [11]. Results for
both the band model as well as the ε-contamination model
are presented in the next section, where the robust detector is
compared with the parametric detector.

Detection Results

The detection results are presented in a binary image whose
pixels are given by

F (i, j) =

{
1 when L(i, j) > γ

0 when L(i, j) ≤ γ,
(10)

where 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny . For assessing
the performance of the robust LRT, we compare its results
to those from the parametric approach. The resulting binary
image for a false alarm rate of α = 0.01 is shown Fig. 5a,
where correctly detected target regions are marked in red,
false alarms are marked in black, and blue circles are used to
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mark the miss detections. As seen, six targets are successfully
detected, but three targets are missed. This result shows the
disadvantage of trying to estimate a single distribution under
each hypothesis which causes even small deviations in the
distribution to degrade the detection performance.
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Fig. 5: Detection results for α = 0.01. Color coding: detected
targets (red), false alarm (black), miss detection (circle). (a)
parametric test. (b) first robust test. (c) second robust test.

Fig. 5b shows the binary image of the robust detector using
the log-likelihood depicted in Fig. 4b as a test statistic. In com-
parison to the parametric model, the robust LRT can detect one

more target, namely the metallic 155mm shell. Furthermore,
using the ε-contamination model, which accommodates more
uncertainty since (p′′0 , p

′′
1 → ∞), only one target is missed,

which is a buried plastic landmine located at the farthest
downrange location as shown in Fig. 5c. We conjecture that
these results can be further improvement by carefully choosing
the density bands such that they better capture the type of
uncertainties in the distributions. After all, the performance
of a minimax optimal test critically depends on an adequate
uncertainty model.

V. CONCLUSION

The problem of landmine detection with FL-GPR in a rough
surface environment has been considered. We have presented
a robust likelihood ratio test which is designed by first con-
structing a density band under each hypothesis using a kernel
density estimator and then finding the corresponding least
favorable densities. The performance of the robust detector has
been evaluated using electromagnetic modeled data and has
been compared with an alternative parametric approach. The
robust detector was shown to reduce the influence of clutter
and increase the detection accuracy.
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