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Abstract—Revealing that a human face on a biometric image 
is a mixture of two or more faces is of immense importance for 
document issuing authorities and document checking services. If 
not done, several persons can use the same photo-ID document 
for identity verification without being condemned. The develop-
ment of automated face morphing detectors is currently in its 
early phase. The detectors reported so far are not mature for the 
market which is reflected in high error rates when tested with 
"unseen" data. Here, we demonstrate that fusion of several by far 
non-optimal detectors may lead to significant improvement of 
detection accuracy compared to that of individual detectors. 
Among the examined fusion approaches, Dempster's Rule of 
combination has the best accuracy allowing for coherent decision 
making even with contradicting decisions of individual detectors.  

Keywords— face morphing attack, morphing detection, fusion 

I. INTRODUCTION 
Morphing is formally a process of gradual transformation of 

one object (source) to another (target). Facial morphs would 
result from morphing one face image to another if the process 
stopped in between. Usage of facial morphs as biometric 
portraits intended for an identity document application is 
malicious, because, if successful, it compromises further 
identity verification by means of the issued document, namely 
the document can be shared among persons who provided their 
face images for morphing. 

Several studies have demonstrated that manually generated 
high-quality morphs cannot be recognized as such neither by 
algorithms nor by human examiners [1], [2] and even low-
quality morphs pose a threat to the identity verification process 
if it is completely automated. This explains the urgent need for 
automated face morphing detectors. 

Since the development of dedicated morphing detectors is 
in its early phase, many current solutions have too high error 
rates for practical use. Possessing several detectors, the 
straight-forward and inexpensive way to improve the overall 
detection performance is to combine the decisions of individual 
detectors into a consensual one keeping an eye on the fact that 
individual detectors may make contradicting decisions or 
provide a low degree of confidence.  

In theory, a necessary and sufficient condition for a 
combination of classifiers to be more accurate than any of its 
members is that the classifiers are accurate and diverse. An 
accurate classifier has an error rate better than random guessing 

and two diverse classifiers make errors on different data points 
[3]. In practice, experimental evidence has been provided that 
for the case of classifiers with a low level of dependence, a 
consensual decision is likely to be more accurate than any of 
individual decisions [4]. It has been also shown that lowering 
correlation among classifiers increases the accuracy of 
combination [5]. In our case, the higher detection accuracy is 
expected because individual morphing detectors may rely on 
different morphing artifacts.  

The research question of this study is whether the recently 
proposed face morphing detectors possess sufficient degree of 
diversity enabling for a detection accuracy gain through fusion 
and which fusion strategy is superior. 

Generally, decision-making systems can be fused at three 
different levels: feature level, matching score level and decision 
level. The earlier the data is fused, the higher implementation 
coasts are, but the higher accuracy is expected. For the case of 
"black box" detectors returning a matching score for an input 
sample, the feature level fusion is not feasible. Hence, we 
empirically evaluate the detection accuracy gain from fusing 
morphing detectors at decision and matching score levels by 
exploring several fusion techniques: majority voting, sum-rule 
and Dempster-Shafer Theory (DST) of evidence [6].  

Our main contribution is in demonstrating how DST can be 
adopted for fusion of morphing detectors, or more specifically, 
we propose a novel technique on how to incorporate the 
uncertainty to induce belief functions from distributions of 
matching scores and show an efficient way to apply Dempster's 
Rule of combination. Furthermore, we explore several 
strategies of assigning degrees of reliability to detectors which 
are based on experimental error rate estimates.  

An empirical evaluation of our concept is made with four 
face morphing detectors introduced in [7], [8], [9] and [10]. 
The experimental results indicate that our proposed fusion 
technique leads to lower error rates than any of individual 
detectors and even any of the reference fusion techniques. 
Surprisingly, the best detection performance is reached when 
equal degrees of reliability are assigned to all detectors. 

Hereafter, we review studies making an effort towards face 
morphing detectors fusion in Section II. Our fusion concept is 
introduced in Section III in detail. The experiments are reported 
in Section IV. Section V concludes the paper with a brief 
summary and future work. 
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II. RELATED WORKS 
A face morphing detector is in its nature a binary pattern 

classifier and the methods for combining pattern classifiers 
have been thoroughly studied. A recent comprehensive 
overview of methods to combine pattern classifiers can be 
found in [11].  

To the best of our knowledge, the first effort to combine 
two face morphing detectors is made in [12]. The authors 
combined keypoints-based detector [7] and Benford detector 
[13]. The former is based on localization and counting of SIFT, 
SURF etc. keypoints found in the face region while the latter 
relies on Benford-features extracted from DCT coefficients of 
JPEG-compressed images. The fusion is done at the feature 
level. The new combined feature vector is a result of 
concatenation of vectors comprised of keypoint features and 
Benford features. This kind of fusion brought no significant 
gain in detection performance compared to individual 
detectors. The probable reason is that both feature spaces are 
designed to formalize the blurring effect emerging in morphed 
face images and therefore do not possess a sufficient degree of 
diversity. Another reason could be that one set of features 
completely dominate another with the data points considered. 

Another study on fusing face morphing detectors at the 
matching-score level is conducted in [14]. There are four 
different sets of feature extraction algorithms addressed: texture 
descriptors (LBP, BSIF), keypoint extractors (SIFT, SURF), 
gradient estimators (Sharp, HOG), and deep convolutional 
neural networks (DCNN). Feature vectors produced by the 
extractors are separately classified with the support vector 
machine (SVM) and the normalized matching scores 
(confidences of SVM decisions) are combined by the sum-rule. 
The experiments have shown that the more detectors are 
combined the better detection accuracy may be achieved 
provided that feature sets "fit" to each other. The equal error 
rate (EER) drops from 5.5% for the best individual detector to 
3.1% for the best combination of two, to 3.1% for the best 
combination of three, and to 2.8% for the best combination of 
four detectors. Based on this result, the authors claim that the 
features are complementary in regard to morphing artifacts. 

For the case of the document checking scenario where a 
live face image is taken for the automated matching with the 
document image, face morphing detection can be done not only 
blindly, but also in the presence of a reference image [15]. In 
[16], the aforementioned feature extraction algorithms are 
applied to document images as well as to the images 
representing the difference between a document and a live 
image and the matching scores are calculated for both. Further, 
the sum-rule fusion as applied at the matching-score level. In 
almost all cases, fusion leads to the significant improvement of 
detection EER. 

Although the sum-rule is simple, intuitive, remarkably 
robust, and outperforms in experiments all other aggregation 
operators [17], we claim that adoption of DST for combining 
belief functions derived from decision confidences of 
individual classifiers has potential to outperform the sum-rule. 
Note that the sum-rule is just another name for the average rule 
meaning the linear combination of matching scores with equal 
weights. 

Since DST has a theoretical foundation for handling 
contradicting and missing decisions of expert systems, it has 
been successfully applied in a wide range of applications [18]. 
In biometrics, DST is used, for instance, for multi-biometric 
fusion [19], or to fuse fingerprint verification algorithms based 
on different feature-levels [20]. In forensics, the advantages of 
reasoning using belief functions for legal practice are discussed 
in [21]. A framework for applying of DST in digital image 
forensics is proposed in [22]. 

III. OUR CONCEPT OF APPLYING DST TO THE FUSION OF FACE 
MORPHING DETECTORS 

The DST is based on two concepts:  

- Belief functions representing degrees of belief for one 
question from subjective probabilities for a related question;  

- Dempster's rule for combining such degrees of belief 
when they are based on independent items of evidence. 

A. Degrees of belief 
Let Θ = {A1, A2,..., Ak} be a finite set of k mutually 

exclusive hypotheses, referred to as the frame of discernment. 
The power set 2Θ is the set of all subsets of Θ including itself 
and the null set O. In DST a degree of belief (mass) is assigned 
to each subset in the power set. In contrast, in probability 
theory the degree of belief is assigned only to each individual 
hypothesis. Formally, a basic belief assignment (BBA) is a 
function m, that assigns a value in the range of [0,1] to each 
subset A and satisfies the following conditions: 
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For a subset A, there exist two functions: belief (Bel) and 
plausibility (Pl). These can be seen as the lower and upper 
bounds of the interval containing the precise probability of A.  
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Dealing with a binary problem (k=2), a questioned face 
image is either morphed or genuine, the frame of discernment 
is defined as Θ = {mor, gen}, with m(mor)/m(gen) representing 
the basic beliefs that the face is morphed/genuine respectively, 
and m(Θ) is a mass of uncertainty. 

We propose to build masses as cumulative distribution 
functions of matching scores obtained from an experiment. Let 
pmor(s) and pgen(s) be the approximations of probability density 
functions of scores for verification attempts with morphed and 
genuine images respectively. For a detector outcome s* ranging 
from 0 to 1, we define the mass m(mor) as an area under pmor(s) 
between 0 and s* and m(gen) as an area under pgen(s) between 
s* and 1, and the mass of uncertainty as a complement to the 
sum of both masses: 
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Note that we interpret the detector outcome s* (also called 
matching score) as a decision confidence with 1 for 100% 
confidence that the image is morphed and 0 for 100% 
confidence that the image is genuine. For discrete matching 
scores, the functions pmor(s) and pgen(s) are the corresponding 
histograms. 

Technically, the three masses are calculated for each item 
of evidence (morphing detector) based on the training samples 
as functions of a decision threshold and stored as a parameter 
of our fusion engine. Since a particular sequence of decision 
thresholds is selected [0, 0.0001, 0.0002, ..., 1], the mass 
functions are discrete. At the time of decision making, for each 
outcome si* of the ith detector we obtain the values mi(mor), 
mi(gen) and mi(Θ) as the nearest points on the corresponding 
discrete mass-curves. The mass-curves of the four morphing 
detectors used in our experiments are shown in Fig. 1.  
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Fig. 1. Belief functions (masses) of the morphing detectors: (a) Keypoint-
based detector, (b) High-Dim LBP detector, (c) GoogLeNet-based detector, 
and (d) VGG19-based detector. 

B. Dempster’s rule of combination 
According to [6], Dempster’s rule of combination for two 

beliefs from independent sources is given by: 

 



21

)()(1)( 2211
AAA

AmAm
K

Am  (5) 

 



0

2211
21

)()(1
AA

AmAmK  (6) 
 

where m(A) represents the combined mass on A, m1 and m2 
represent the masses of first and second items of evidence 
respectively, and K represents the normalization constant. The 
second term in K describes the conflict between two items of 
evidence. If it is equal to 1 then K is equal to 0 implying that 
these two items contradict each other and cannot be combined 
by applying Dempster’s rule. 

Having two detectors, first with m1(mor), m1(gen), m1(Θ) 
and the second with m2(mor), m2(gen), m2(Θ). Dempster’s rule 
combining these two beliefs can be written as:  
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The general form of Dempster’s rule for combining n items 
of evidence for a binary variable can be found in [23]. The 
authors also propose alternative equations which allow for 
efficient computation of combined belief and plausibility: 
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In our experiment, we use equations (11)-(14) to obtain a 
final fusion score which is given by a combined belief. Since a 
combined plausibility is a complement to a combined belief in 
an opposite hypothesis, it does not bear additional information 
and therefore is not included in our fusion engine. 

C. Reliability of individual detectors 
Another important issue is the general reliability of the 

information sources or in our case morphing detectors. We 
propose to derive the degrees of reliability empirically based on 
the detection performance evaluation with a training dataset. 
Three strategies are explored. In the first one, all sources are 
absolutely reliable. In the second one, the degree of reliability 
is given by the area under the ROC curve (AUC). For the ith 
detector wi = AUCi. In the third one, the degree of reliability is 
the inverted EER, namely wi = 1-EERi.  

Note that we use the same training samples to build mass-
curves and to obtain the degrees of reliability. If the training 
dataset is substantially different from real-life data, there is a 
risk that the mass-functions and degrees of reliability do not fit 
to the "unseen" data and the combined decision may be less 
accurate than individual decisions. Hence, choosing the training 
dataset can be seen as an additional source of ambiguity. In 
order to avoid the reduction of the generalization ability of a 
decision making system, if there is a risk to back the wrong 
horse when choosing the training dataset, we recommend 
considering all sources equally reliable. 

IV. EXPERIMENTS 

A. Individual morphing detectors 
There are four face morphing detectors in our experiments 

that are seen as black boxes. They produce matching scores in 
the range between 0 and 1 with 1 for a morphed and 0 for a 
genuine image. The default decision boundary is 0.5. 
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The keypoint-based morphing detector [7] relies on the 
assumption that blending as a part of the morphing process 
causes reduction of face details so that the amount of 
significant corners and edges becomes lower in face images 
after morphing. Five keypoint detectors (SIFT, SURF, FAST, 
ORB, AGAST) and two edge detectors (Canny, Sobel) are used 
to quantify the detail reduction. Linear SVM is utilized for 
classification. The detector is trained based on a proprietary 
dataset of 2000 genuine and 2000 morphed high-quality face 
images in an eMRTD-compatible format. Morphed faces are 
generated based on approaches from [12] and [13]. 

The High-Dim LBP morphing detector [8] exploits the 
ability of Local Binary Patterns (LBP), as texture descriptor, to 
grasp the change of textural skin characteristics after morphing.  
The detector includes the following steps: normalization of an 
input image based on five facial landmarks (eyes, nose, and 
mouth corners); building an image pyramid and extraction of 
fixed-size image patches centered around each landmark at 
each scale of the pyramid; dividing each patch into a grid of 
4×4 cells and encoding each cell by an LBP descriptor; and 
finally concatenating the LBP descriptors to a 99120-dim 
feature vector. The classification is done with the linear SVM 
using face images from the Multi-PIE dataset. Morphed faces 
are generated based on the approach described in [24]. 

The next two morphing detectors are based on GoogLeNet 
and VGG19 DCNN models trained for the ImageNet Large 
Scale Visual Recognition Challenge. Using transfer learning, 
the GoogLeNet-based morphing detector [9] and the VGG19-
based morphing detector [10] were trained as binary classifiers 
with two output neurons. Prior to feeding the face images into 
the networks these are cropped to the smallest bounding box 
that includes the eyebrows and mouth, and rescaled to the size 
of 224x224 pixels. The training is done based on images from 
proprietary and public face datasets using equal numbers of 
morphed and genuine images. Morphed faces are generated 
based on the approach described in [9]. The former detector is 
trained with about 700 images of each type and the latter 
detector with about 1500 images of each type. The latter 
detector is referred to as "naive" in the original paper.  

TABLE I.  DETECTION PERFORMANCE OF INDIVIDUAL MORPHING 
DETECTORS AND FUSION APPROACHES; FPR, FNR AND HTER ARE IN %. 

Detection approach AUC EER TEER FPR FNR HTER 

Individual morphing detectors 
Keypoints [7] 97.44 8.82 0.20605 7.84 23.00 15.42 

High-Dim LBP [8] 93.37 14.89 0.081681 1.96 47.01 24.49 
GoogLeNet [9] 97.72 7.80 0.9999 31.37 0.83 16.10 

VGG19 [10] 99.48 2.94 0.54295 4.90 3.04 3.97 
Fusion approaches 

Majority voting - - - 0.00 7.27 3.63 
Average rule - - - 1.96 1.93 1.95 

Linear comb. (AUC) - - - 0.00 2.21 1.10 
Linear comb. (EER) - - - 0.00 2.58 1.29 

DST - - - 0.98 0.37 0.67 
DST (AUC) - - - 0.98 0.55 0.77 
DST (EER) - - - 0.98 0.55 0.77 

B. Fusion strategies 
As reference fusion approaches we take the majority voting 

as a trivial example of fusion at decision level and the average 
rule as a trivial example of fusion at matching score level, and 
compare these with DST-based fusion. In case of equal number 
of votes, the majority rule decides "genuine". Moreover, the 
average rule is extended to a linear combination with the 
weights assignment according to the degrees of reliability (see 
Section III.C). Note that the weights undergo no normalization. 
The degrees of reliability are also exploited in the DST-based 
fusion. To do so, the values mi(mor), mi(gen), mi(Θ)  i=1..n are 
multiplied by the corresponding weight wi prior to applying 
Dempster’s rule of combination.  

C. Evaluation Data 
We evaluate the performance of the individual detectors as 

well as of their combination with the AMSL Face Morph 
Image Data Set provided for the ACM IH&MMSec'19 Special 
Session Media Forensics - Fake or Real? (https://www.ihmm 
sec.org/cms/special-session/index.html). The face images were 
generated in a way to comply with the technical requirements 
of the ICAO portrait quality standard for eMRTD [25] and to 
fit on a chip of an eMRTD. The dataset is comprised of 102 
neutral, 102 smiling and 2175 morphed face images. Morphed 
faces were created based on neutral faces. We split morphs into 
two equally large non-overlapping subsets. Our training set 
containing neutral genuine faces (102) and the first subset of 
morphs (1088) is used for building mass functions and 
calculating reliabilities of individual detectors. Our test set 
containing smiling genuine faces (102) and the second subset 
of morphs (1087) is used for performance evaluation.  

D. Evaluation metrics 
We consider morphing detection to be a standard detection 

problem with morphed images as positive examples. The 
standard performance metrics for detection systems are the 
False Positive Rate (FPR) giving a ratio of falsely detected 
genuine images (false alarms) and the False Negative Rate 
(FNR) giving a ratio of falsely missed morphed images. With 
the training dataset, we locate the decision threshold TEER 
where both errors are equal and determine the EER and AUC. 
With the test dataset, when the decision thresholds are fixed by 
detectors, we calculate FPR and FNR as well as the Half Total 
Error Rate (HTER) as an average of both.  

E. Results 
The results of our experiments are summarized in Table 1. 

For the detectors [7], [8] and [9], the default decision threshold 
of 0.5 is by far not optimal that can be read from the large 
difference between the EER with the training set and the HTER 
with the test set as well as the strong deviation of the decision 
threshold where the EER is reached (TEER) from 0.5. In 
contrast, the morphing detector from [10] demonstrates the 
optimal performance close to the default decision threshold and 
achieves the best HTER of 3.97%. The balance between FPR 
and FNR indicates the robustness of the detector.  

The majority voting only slightly improves the HTER over 
the best performing morphing detector (3.63% vs. 3.97%), but 
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lead to loosing the balance between FPR and FNR. The 
average rule reduces the HTER by half from 3.97% to 1.95% 
and even improves the balance making FPR and FNR almost 
equal. The DST-based fusion performs the best with the HTER 
of 0.67% which is approx. a third part of that with the average 
rule. Note that for only 6 samples the individual decisions were 
not combinable with Dempster's rule. The distributions of 
matching scores for the average rule and DST-based fusion are 
demonstrated in Fig. 2. 
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Fig. 2. Histograms of matching scores after fusion: (a) Average rule, (b) 
DST-based fusion  

Noteworthy, assigning degrees of reliability to individual 
detectors and using these degrees as weights when combining 
scores to a linear combination (instead of the average rule) may 
significantly improve HTER, which is demonstrated in our 
experiment. When defining the weights, AUC seems to be 
preferable to inverted EER. In contrast, different degrees of 
reliability assigned to individual detectors only trigger the drop 
of HTER with the DST-based fusion. However, the observed 
tiny difference in HTER values might have been arisen due to 
quantization errors. 

V. CONCLUSION 
In this paper, we discussed an application of Dempster-

Shafer Theory (DST) to the fusion of face morphing detectors. 
We proposed an approach to induce belief function based on 
cumulative distributions of matching scores in an independent 
experiment and a computationally effective way to combine the 
beliefs. We empirically demonstrated that the error rates with 
the DST-based fusion are significantly lower compared to those 
of individual detectors as well as of the reference fusion 
approaches: the majority voting and the average rule. Assigning 
degrees of reliability (also referred to as weights) to individual 
detectors improves the detection performance of the average 
rule transforming that to a linear combination, but does not help 
to reduce the error rates of the DST-based fusion. 
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