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Abstract—In this paper, we consider automatic radar pulse
detection and intra-pulse modulation classification for cognitive
electronic warfare applications. In this manner, we introduce an
end-to-end framework for detection and classification of radar
pulses. Our approach is complete, i.e., we provide raw radar
signal at the input side and produce categorical output at the
output. We use short time Fourier transform to obtain time-
frequency image of the signal. Hough transform is used to
detect pulses in time-frequency images and pulses are represented
with a single line. Then, convolutional neural networks are used
for pulse classification. In experiments, we provide classification
results at different SNR levels.

Index Terms—Cognitive EW, pulse detection, intra-pulse mod-
ulation classification, convolutional neural networks

I. INTRODUCTION

Modern radars have the ability of changing their waveform
and modulation type in a quick and agile way even from pulse
to pulse. Moreover, MOP and antenna scan type classification
are important in terms of obtaining critical parameters to
overcome uncertainties for deinterleaving since other param-
eters in modern radar such as frequency and pulse width are
not discriminative. Automatic modulation on pulse (MOP)
extraction is necessary in order to detect these changes. Hence,
cognitive electronic warfare (EW) provides rapid solutions in a
detailed way. In [1], automatic antenna scan type classification
is investigated.

Furthermore, detection and classification of radar signals
play an important role in modern radar warning receivers
since immediate actions are required in some tasks such as in
military applications. Detection of radar signals is extraction of
single radar pulses from the environment while classification
denotes determining of the modulation category that the pulse
produced from. Detecting radar pulses is an important task
to take actions against threats in short time. Moreover, intra-
pulse modulation classification has significance in Electronic
Warfare (EW) systems. Electronic support systems which is
a subdivision of EW focus on acquiring and intercepting
radar signals of possibly threats’ to perform analysis of radar
features and identity to generate reports. Therefore, intra-pulse
modulation classification is important in terms of extracting
parameters of threat emitter in decision making.

Various signal processing techniques are proposed for the
detection of low probability of intercept (LPI) radar signals.
[2] uses Wigner-Ville Hough transform (WVHT) to detect
linear frequency modulated LPI radar waveforms. Moreover,
[3] employs atomic decomposition to extract time-frequency
characteristics of signals. Similarly, [4] investigates signal
detection using atomic decomposition with a chirplet dictio-
nary. [5] introduces an algorithm to detect a linear mixture
of signals based on atomic decomposition and expectation
maximization. [6] discusses a method using multi-channel
digital deramping for frequency modulated waves. There are
also studies using time-frequency analysis (TFA) techniques
for feature extraction to be used in classification. [7] uses
short-time Fourier transform (STFT), [8] utilizes Wigner Ville
Distribution (WVD) and [9] investigates Choi-William Dis-
tribution (CWD). Also, features extracted via autocorrelation
function and principal component analysis are used in [10],
[11], respectively.

Moreover, many machine learning methods are applied to
intra-pulse modulation classification. [12] uses a classifier
based on fuzzy Support Vector Machines (SVM) while [13]
utilizes mutual information based feature reduction before
fuzzy SVM. SVM is also used in [13]. The main problem
with mentioned approaches is that features employed may not
be explanatory. Therefore, it is not an easy task to determine
discriminative features or even extracted features may not be
adequate for decent performance. Hence, neural network based
approaches become popular for automatic feature extraction.
Artificial neural networks are used in [14] while [8] employs
convolutional neural networks for feature extraction and clas-
sification.

Aforementioned studies focus on either pulse detection or
modulation classification. In this study, we present a complete
framework performing both detection and classification of
radar pulses in the sense of modulation categorization. In the
proposed technique, radar signals are assumed to be received
in their raw form. In detection phase, we first apply STFT
to obtain time-frequency images (TFI) of radar signals. To
detect pulses in TFIs, we use the outcomes of Hough transform
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and represent each pulse with a single line. Then, regions
of the TFI containing pulses are extracted using these lines.
In classification part, we use convolutional neural networks
(CNN) to categorize radar pulse signals. At the end, class
probabilites are given.

The organization of the paper is as follows. In Section II we
provide the problem description while in Section III we inves-
tigate pulse detection and intrapulse modulation classification.
We illustrate classification results in Section IV. In Section V,
we provide certain remarks and conclude the paper.

II. PROBLEM DESCRIPTION

We study radar pulse detection and classification in a
complete framework where radar signals are assumed to be
received as in their raw form within limited time intervals
called dwells. Time-frequency images of dwells are obtained
using short time Fourier transform. Each dwell corresponds to
sequence of radar pulses distributed in time. Moreover, each
pulse is associated with a label determining the class that the
pulse belongs to. Our goal is to first detect pulses in TFIs
and then classify them into a category. Fig. 1 gives complete
framework for pulse detection and modulation classification.
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Fig. 1. Proposed complete framework for radar pulse detection and classifi-
cation.

III. METHODS

In this section, we explain the methods used in radar pulse
detection and intra-pulse modulation classification.

A. Pulse Detection

We first use short time Fourier transform to obtain TFI.
STFT is obtained by applying the Fourier transform by a fixed-
sized, moving window to input. STFT is basically segmenting
the signal into narrow time intervals in which the signal is
assumed to be stationary aand then taking Fourier transform of
each segment. Thus, each Fourier transform provides spectral
information of different slices of the signal with momentarily
time and frequency information. The definition of STFT of a
signal f(t) is given by

STFT (t
′
, w) =

∫
t

[f(t) ·W (t− t
′
)] · e−j2πwt

where W (t) denotes utilized window.

We use Hough transform to detect pulses in TFIs. Hough
transform is a method to recognize lines and arbitrary shapes.
It represents points in a given image in Hough space. Edge
detection is performed first to detect edges in the image. Then,
edge points are mapped to the Hough space and the areas
where Hough space lines intersect are determined resulting
detected lines in the original image. After Hough transform
produces a combination of lines for regions expectedly cor-
responding pulses, we produce a single line for these regions
to extract images of pulses. For that purpose, we produce two
lines to represent a pulse, one of which is horizontal and the
other one is vertical. For a line produced by Hough transform,
we first check if there is enough number of lines around it.
If this condition is satisfied we say that there is a pulse. Line
representing the pulse horizontally are determined using the
leftmost and rightmost points of the group of lines of interest.
In other words, end points of the horizontal line are determined
by the leftmost and rightmost end points of the group of lines.
Similarly, we follow the same approach to draw vertical line,
i.e., it is produced using the uppermost and lowermost points
of the group of lines given by Hough transform. At the end,
final line is the longer one of horizontal and vertical lines. To
obtain image regions corresponding to pulses, region around
the middle point of the final line is extracted.

B. Pulse Classification

Convolutional neural network is a special type of neural
network that makes explicit assumption that the inputs are
images. Thus, they are widely used for feature extraction and
classification in many tasks related to image processing such
as image segmentation, classification and video processing.
Their design enables to process images in a more efficient
way such that each neuron is connected only a local region of
the input volume. In CNNs, input is convolved with neurons
and then non-linear operations are performed such as pooling.
It is critical to learn the weights of the neurons to capture
local similarities in the input. At the end, class probabilites
are provided.

In our CNN structure, we have 3 convolutional layers. The
number of filters in each layer is 8, 16 and 32, respectively. We
apply batch normalization in each layer after convolution op-
eration. Rectified linear unit is chosen as non-linear function.
At the end of each layer but the last one we perform max-
pooling of size 2x2 with a stride of 2 to reduce size, thus,
decreasing computational load. Fig. 3 shows CNN model we
use.

IV. EXPERIMENTS

In this section, we first describe our dataset and then
illustrate the intra-pulse modulation classification results.

A. Dataset

We construct a dataset of 10 classes for simulations. We
consider both frequency and phase modulated radar waveforms
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Fig. 2. Convolutional neural network structure used in complete framework. Model consists of three convolutional layers and class probabilities are provided
after softmax. Numbers on convolutional filters denote the number of convolutional filters.

Fig. 3. Examples of all modulations under different SNR. Modulation types
are in the order given in Table I from up to bottom while SNR values are
-10, 0 and 10 dB from left to right.

in supervised learning framework. The modulation types con-

TABLE I
MODULATION TYPES

Frequency Modulation (FM) Phase Modulation (PM)
Sawtooth Upchirp Barker

Sawtooth Downchirp Hadamard
Stepped Upchirp P1

Stepped Downchirp T1
Sinusoidal

NFLM-Taylor

sidered in the simulations are given in Table I.
We consider different SNR levels in simulations which are

-10 dB, 0 dB and 10 dB. Thus, a different set is produced for
each SNR. To compose a dataset with various samples of dis-
tinct modulation types, we consider different pulse width val-
ues for both FM and PM modulated waveforms as well as dif-
ferent bandwidths for FM modulated waveforms. Specifically,
we use the set for pulse width {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
μs and 100− 200 MHz interval with 10 MHz increments for
bandwidth of radar pulses. Moreover, the number of steps in
stepped modulated waves is 5 while taylor number is 5 for
NFLM-Taylor waveform. Code number for all PM modulated
waves but Barker is 4 whereas phase change is 13 for T1
modulation. Code number for Barker is taken as 2. Pulse
repetition intervals for all modulations are constant and set
to 10 μs. All other parameters for modulated radar pulses
are same. Sampling frequency is 2500 MHz and window
length used while producing TFIs is chosen as 512. Fig. 3
demonstrates examples of all modulation types under different
SNR values. Images correspond to FM and PM modulated
waves with the order given in Table I from up to bottom while
SNR values used to produce dataset are -10, 0 and 10 dB from
left to right.

B. Simulations

In this part, we give classification results. We use accuracy
value as performance measure. It is the percentage of correctly
classified samples to the number of all samples in the dataset.
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TABLE II
CONFUSION MATRIX FOR -10 DB SNR

��������True
Predicted Sawtooth Up Sawtooth Down Stepped Up Stepped Down Sin NFLM-Taylor Barker Hadamard P1 T1

Sawtooth Up 121 0 0 0 1 27 0 0 0 1
Sawtooth Down 0 147 0 1 2 0 0 0 0 0

Stepped Up 1 0 147 1 0 1 0 0 0 0
Stepped Down 0 0 2 147 1 0 0 0 0 0

Sin 3 1 0 0 143 2 1 0 0 0
NFLM-Taylor 9 0 0 1 3 137 0 0 0 0

Barker 0 0 0 1 0 0 42 48 40 19
Hadamard 0 0 0 0 0 0 28 48 51 23

P1 0 1 0 0 0 0 33 45 44 27
T1 0 0 0 0 0 1 33 32 36 48

TABLE III
CONFUSION MATRIX FOR 0 DB SNR

��������True
Predicted Sawtooth Up Sawtooth Down Stepped Up Stepped Down Sin NFLM-Taylor Barker Hadamard P1 T1

Sawtooth Up 143 0 1 0 1 5 0 0 0 0
Sawtooth Down 0 148 0 1 1 0 0 0 0 0

Stepped Up 0 0 148 2 0 0 0 0 0 0
Stepped Down 0 0 0 150 0 0 0 0 0 0

Sin 0 0 0 1 149 0 0 0 0 0
NFLM-Taylor 6 0 2 0 0 142 0 0 0 0

Barker 0 0 0 0 0 0 63 45 39 3
Hadamard 0 0 0 0 0 0 16 103 30 1

P1 0 0 0 0 0 0 27 39 78 5
T1 0 0 0 0 0 0 15 17 21 97

TABLE IV
CONFUSION MATRIX FOR 10 DB SNR

��������True
Predicted Sawtooth Up Sawtooth Down Stepped Up Stepped Down Sin NFLM-Taylor Barker Hadamard P1 T1

Sawtooth Up 142 0 0 1 1 5 0 1 0 0
Sawtooth Down 0 150 0 0 0 0 0 0 0 0

Stepped Up 0 0 150 0 0 0 0 0 0 0
Stepped Down 0 2 0 148 0 0 0 0 0 0

Sin 0 0 0 0 150 0 0 0 0 0
NFLM-Taylor 2 0 0 0 1 147 0 0 0 0

Barker 0 1 0 0 0 0 115 13 17 4
Hadamard 0 0 0 0 0 0 16 129 5 0

P1 0 0 0 0 0 0 11 10 129 0
T1 0 0 0 0 0 0 4 0 0 146

We train a separate classifier for each SNR value and obtain
performance results using test sets that the classifiers have
never seen. Moreover, we perform tests for the classifiers that
are trained in each SNR value using test sets of different
SNR values, i.e., we train a classifier in -10 dB SNR and
conduct tests using 0 and 10 dB SNRs. Since the environment
conditions may alter SNR may be different. Thus, a classifier
trained in a specific SNR value may be employed under
different SNRs. We test classifiers trained under different
SNRs to see the effect this type of a change.

We use 650 training, 100 validation and 150 test samples
for each modulation type when training and test are conducted
in same SNR values. When training and test are performed for
different SNR values whole sets are used for training and test

in respective SNRs. In this case, sets consist of 900 samples.
Tables II, III and IV give the confusion matrices for -10 dB,
0 dB and 10 dB SNR, respectively. Results demonstrate that
as SNR value increases classification performance improves.
This outcome is expected since radar pulses is much more
visible in high SNR. Classification performance is much better
for frequency modulated pulses than phase modulated pulses.
Since frequency does not change visibly for phase modulated
pulses it is harder to distinguish PM pulses. Therefore, in high
SNR case details for PM pulses are more clear yielding better
classification performance in this case.

Classification of frequency modulated pulses yields good
performance even for low SNR value. For FM pulses, sawtooth
upchirp and NFLM-Taylor are confused. Other than that, the
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TABLE V
CLASSIFICATION ACCURACIES UNDER DIFFERENT SNR IN TRAIN AND

TEST

Train Test Accuracy
-10 dB -10 dB 68.27 %
-10 dB 0 dB 65.49 %
-10 dB 10 dB 59.44 %
0 dB -10 dB 38.58 %
0 dB 0 dB 81.40 %
0 dB 10 dB 77.57 %
10 dB -10 dB 15.67 %
10 dB 0 dB 64.17 %
10 dB 10 dB 93.73 %

other modulations are distinguished clearly. For PM pulses,
radar pulses are not completely separated to distinct classes
even for high SNR case. Moreover, Table I provides clas-
sification accuracies trained and tested in all combinations
of SNR values. As expected, when SNR increases accuracy
improves for same train and test SNR. In other cases, classi-
fication performance decreases significantly. The performance
reduction is much less when SNR increases. This behavior can
be seen when SNR increases both from -10 dB to 0 dB and
from 0 dB to 10 dB. On the other hand, the opposite of this
behavior is observed in reverse case, i.e., when SNR decreases
for example from 10 dB to 0 dB. In these cases, performance
reduces severely such that trained classifier is not suitable to
use.

V. CONCLUSION

We study radar pulse detection and modulation classification
where radar pulses are assumed to be received in their raw
form. In this manner, we provide a complete framework
performing both detection and classification. Raw radar signals
are processed to obtain TFIs using STFT. Then, we employ
Hough transform to detect radar pulses in TFIs and denote
these pulses with a single line. Convolutional neural networks
are used to perform intra-pulse modulation of radar signals.
Classification performance is given with respect to different
SNR values in terms of accuracy.
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