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Abstract—This paper first introduces the centralized gener-
alized eigenvalue decomposition (GEVD) based multichannel
Wiener filter (MWF) with prior knowledge for node-specific
signal estimation in a wireless sensor network (WSN), where
(some of) the nodes have partial prior knowledge of the desired
source steering vector. A distributed adaptive estimation algo-
rithm for a fully-connected WSN is then proposed demonstrating
that this MWF can be obtained by letting the nodes work on
compressed (i.e. reduced-dimensional) sensor signals compared
to the centralized approach. The algorithm can be used in
applications such as speech enhancement in an acoustic sensor
network, where (some of) the nodes nodes have prior knowledge
on the location of the desired speech source and on their
local microphone array geometry or have access to clean noise
reference signals.

Index Terms—Wireless Sensor Networks (WSN), distributed
estimation, multichannel Wiener filter (MWF), generalized eigen-
value decomposition (GEVD).

I. INTRODUCTION

In a wireless sensor network (WSN) [1], nodes aim to com-
bine their sensor signals with (possibly compressed) sensor
signals of other nodes in an optimal way to perform a task
at hand, such as the estimation of a node-specific desired
signal. This generally leads to superior estimation performance
compared to that of the stand-alone estimation, where each
node uses only local sensor signals. The goal for every node
is to obtain the same performance as if all the sensor signals
were collected in a fusion center (FC) [2], [3], but in a
distributed fashion while minimizing the local computations
and communication with the other nodes [4], [5].

Node-specific signal estimation is considered here, where
the different node-specific desired signals are assumed to be
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dependent on a common desired source signal. The algorithms
in [4], [5] exploit this common signal subspace, to significantly
compress the sensor signals that are communicated between
the nodes, without compromising performance. To construct
the corresponding signal correlation matrix, the algorithms
assume to have access to the activity (on-off) pattern of the
desired source signal. However in low SNR scenarios, this
might result in a poor estimation of the signal correlation
matrix, deteriorating the node-specific signal estimation per-
formance [6]. Inspired by Ali et al. [7], a scenario is considered
in this paper where (some of) the nodes have partial prior
knowledge of the desired source steering vector, which can,
for instance, in an acoustic scenario be obtained if nodes have
prior knowledge on the location of the desired speech source
and on their local microphone array geometry [8] or have
access to clean noise reference signals [9].

This paper first introduces the centralized generalized eigen-
value decomposition (GEVD) based multichannel Wiener filter
(MWF) with prior knowledge for node-specific signal esti-
mation in a WSN, where (some of) the nodes have partial
prior knowledge of the desired source steering vector. A
distributed adaptive estimation algorithm for a fully-connected
WSN is then proposed demonstrating that this MWF can
be obtained by letting the nodes work on compressed (i.e.
reduced-dimensional) sensor signals compared to the central-
ized approach. It turns out that the amount of compressed
sensor signals communicated by a node that has prior knowl-
edge, will be twice the amount needed in previous algorithms
[4], [5], since extra compressed sensor signals are needed to
propagate the prior knowledge to all the other nodes. Still the
signal estimation task is enhanced with this prior knowledge,
justifying this extra communication.

The paper is organized as follows. The problem formulation
and the centralized approach to the node specific signal estima-
tion problem with prior knowledge are presented in Section II.
In Section III the distributed algorithm is presented. In Section
IV batch-mode simulations are provided to show convergence
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of the proposed distributed algorithm. Conclusions are given
in Section V.

II. PROBLEM FORMULATION AND PK-GEVD-MWF
A. Node-specific signal estimation

Consider a fully-connected WSN with K nodes, where node
k ∈ K = {1, ...,K} has access to observations of an Mk-
dimensional complex-valued sensor signal yk:

yk = sk + nk = aks̆+ nk (1)

where s̆ is a latent complex-valued signal representing the
desired source signal, ak is an (for the time being) unknown
Mk-dimensional complex-valued steering vector and nk is
an additive noise signal that can be correlated with other
noise signals in the WSN. Define also the centralized M -
dimensional signals y, s,n and the centralized M -dimensional
steering vector a as the stacked version of yk, sk,nk and ak

respectively, where M =
∑K

k=1Mk. Then (1) can be extended
to

y = s + n = as̆+ n. (2)

The node-specific task of each node k ∈ K is to find an
estimate of the desired signal dk, defined w.l.o.g. as the desired
source signal component in the node’s first channel:

dk = [1 0] sk = eH
dk

s (3)

where H denotes the conjugate transpose operator, 0 is an all-
zero matrix with matching dimensions and edk

= [0 1 0]H

selects the correct desired source signal component in s. Each
node estimates its desired signal dk as a linear combination
of all the sensor signals y by minimizing the following mean
squared error (MSE) criterion:

w̌k = arg min
wk

E{‖dk −wH
k y‖2} (4)

where E{.} is the expected value operator. The resulting filter
is referred to as the multichannel Wiener filter (MWF)1. If
Ryy = E{yyH} has full rank, the unique solution of (4) is
[10]:

w̌k = R−1
yyRydk

= R−1
yyRysedk

= R−1
yyRssedk

(5)

with Rydk
= E{ydHk }, Rys = E{ysH} and Rss = E{ssH}.

The last step in (5) is allowed due to the (often valid)
assumption that the additive noise signal n and the desired
source signal s̆ are uncorrelated. The signal correlation matrix
Rss is then given by aE{s̆s̆H}aH , where E{s̆s̆H} is the
desired source signal power. Notice that Rss is not directly
observable, since nodes do not have access to the clean desired
source signal component sk. A robust way to estimate the
signal correlation matrix Rss is given in the next subsection,
based on the exploitation of the on-off behavior of the desired
source signal and on partial prior knowledge of the desired
source steering vector a.

1Notice that all above signals and filters are defined as complex-valued sig-
nals, permitting the model to include, e.g., convolutive time-domain mixtures,
described as instantaneous per-frequency mixtures in the (short-term) Fourier
transform domain, making it also applicable for speech enhancement.

B. Centralized prior knowledge GEVD-based Rss estimation
If the desired source signal has an on-off behavior and the

on-off detection of the signal is available, e.g. via a voice
activity detector in speech applications [11], a distinction can
be made between the signal+noise correlation matrix Ryy

and noise-only correlation matrix Rnn = E{nnH}. These
correlation matrices can be estimated by (recursive) time-
averaging during signal+noise and noise-only periods if y
is assumed to satisfy (short-term) stationarity and ergodicity
conditions and will be denoted by Ryy and Rnn respectively.
Rss can then be estimated from Rss = Ryy − Rnn.

However such an estimate has mostly a rank larger than 1,
especially in low SNR scenarios [6], so that a better correlation
matrix estimation method is needed.

There exist different signal correlation matrix estimation
methods [6], but recently Ali et al. [7] have introduced a
signal correlation matrix estimation method, where the on-off
behavior of the desired source signal is exploited and partial
prior knowledge of the desired source steering vector is taken
into account.

Extending this method in the WSN context, one can con-
sider a scenario where a node k ∈ K has prior knowledge on
the subspace of the steering vector subspace ak, represented
by a unitary Mk × Lk subspace matrix Hk. An example
scenario is presented in the simulations in Section IV. Denote
the orthogonal complement to the column space of Hk as the
column space of the unitary Mk× (Mk−Lk) blocking matrix
Bk, such that HH

k Bk = 0. Stacking these subspace matrices
and blocking matrices in one centralized subspace matrix and
blocking matrix respectively results in

H =

H1 · · · 0
...

. . .
...

0 · · · HK

 ,B =

B1 · · · 0
...

. . .
...

0 · · · BK

 (6)

where H is a block-diagonal M × L dimensional matrix and
B a block-diagonal M × (M − L) dimensional matrix with
L =

∑K
k=1 Lk. Here M − L is representative of how much

prior knowledge is available, summed over all the nodes. One
extreme case is the case where node k does not have any
prior knowledge, then Hk = IMk

(the Mk × Mk identity
matrix) and Bk =

[ ]
and so Mk − Lk = 0 (’zero prior

knowledge’). The other extreme case is where node k knows
its steering vector ak (up to a scalar α) , then Hk = αak and
so Mk − Lk = Mk − 1. An in-between case is where some
of the sensor signals in node k are known to be clean noise
reference signals, for instance when the first signal is a clean
noise reference signal, then

Hk =

[
0

IMk−1

]
; Bk =

[
1
0

]
(7)

and so Mk − Lk = 1.
The following centralized optimization criterion is then

defined to provide an estimate for Rss:

arg min
rank(Rss)=1

BHRssB=0

‖ R−1/2
nn (Ryy −Rnn −Rss) R−H/2

nn ‖2F (8)
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where || . ||F denotes the Frobenius norm. Here Rss is
constrained to be rank 1, the column and row space of Rss are
constrained to lie in the column space of H and approximation
errors are considered relative to the estimated noise correlation
matrix Rnn (cfr. the pre- and post-multiplication with the
Cholesky factor of R−1

nn).
The solution (proof omitted) to (8) is based on the GEVD

[10], [12] of a reduced L × L dimensional matrix pencil
{Rŷŷ,Rn̂n̂}:

Rŷŷ = Q̂ΣŷŷQ̂H

Rn̂n̂ = Q̂Σn̂n̂Q̂H (9)

where Rŷŷ and Rn̂n̂ are defined in the next paragraph. Here,
Q̂ = X̂−H is an invertible matrix, the columns of X̂ are
unique up to a scalar multiplication and define the generalized
eigenvectors. Σŷŷ and Σn̂n̂ are real-valued diagonal matrices
where Σŷŷ = diag{σ̂y1

, .., σ̂yL
},Σn̂n̂ = diag{σ̂n1

, .., σ̂nL
}

define the generalized eigenvalues sorted from high to low
{σ̂yi

/σ̂ni
} ratio.

The reduced L × L dimensional correlation matrices
{Rŷŷ,Rn̂n̂} can be determined by first performing an LCMV-
beamforming on the sensor signals y, defined by the following
LCMV-criterion:

C = arg min
C

trace{CHRnnC}

s.t. HHC = IL
(10)

where C is an M×L matrix, of which every column represents
a specific LCMV-beamformer. The solution, here based on a
GSC-implementation [13], is given by

C = H−BF (11)

F = (BHRnnB)−1BHRnnH. (12)

The reduced dimension correlation matrices {Rŷŷ,Rn̂n̂} are
then determined as the correlation matrices corresponding to
the compressed signal ŷ = CHy, i.e. Rŷŷ = CHRyyC and
Rn̂n̂ = CHRnnC.

The optimal solution for Rss of (8) is finally given by

Řss = HQ̂diag{σ̂y1 − σ̂n1 , 0, ..., 0}Q̂HHH . (13)

C. Centralized prior knowledge GEVD-based MWF

Substituting estimate (13) in (5) and using Ryy = Rnn +
Řss, after some manipulations, results in

w̌k = CŴGEVDHHedk
(14)

where

ŴGEVD = X̂diag{ σ̂y1 − σ̂n1

σ̂y1

, 0, ..., 0}Q̂H (15)

is the GEVD-based MWF [5], [6] that estimates ŝ = CHs
from ŷ.

The filter obtained in (14) is referred to as the prior-
knowledge GEVD-based MWF (PK-GEVD-MWF) and the
formula shows that the resulting filter is a concatenation of
three different blocks. The first block corresponds to the

LCMV-beamformers (10), the second block is a full GEVD-
based MWF and the last block is a selection and scaling part,
specific to node k, to estimate the desired signal dk.

To determine the centralized PK-GEVD-MWF, the corre-
lation matrices Ryy and Rnn need to be constructed. This
would require the nodes to send all their Mk sensor signals yk

to a FC. This will require a large communication bandwidth,
and furthermore, as these correlation matrices are large, the
inversion of BHRnnB in (12) and the GEVD in (9) will
require significant computational power at the FC.

To overcome this complexity problem, a distributed adaptive
estimation algorithm is presented in the next section where
nodes only broadcast 2 compressed sensor signals and the
computations in each node are performed on a smaller number
of signals2, i.e. only the local sensor signals and the received
compressed sensor signals from the other nodes. It will turn
out that each node will (upon convergence) still be able to
obtain the same filter output as if the node had access to
all the sensor signals in the WSN and so could directly
compute the centralized PK-GEVD-MWF. The distributed
algorithm is referred to as the Prior Knowledge GEVD-based
Distributed Adaptive Node Specific Signal Estimation (PK-
GEVD-DANSE) algorithm. A drawback of the PK-GEVD-
DANSE algorithm is the slower adaptation and tracking speed
compared to the centralized algorithm, due to the block-
iterative nature of the algorithm.

III. PK-GEVD-DANSE ALGORITHM

A. Algorithm description

In the PK-GEVD-DANSE algorithm, each node k commu-
nicates 2 compressed sensor signals instead of the full Mk-
dimensional sensor signal yk, namely:

• the signal zk = pH
k yk where the Mk-dimensional com-

pression vector pk corresponds to the current estimate of
the MWF coefficients corresponding to the local sensor
signals;

• the signal zk = λH
k BH

k yk corresponding to a compressed
version of the local noise references BH

k yk, where the
(Mk − Lk)-dimensional compression vector λk will be
defined later.

Consequently, each node k has access to reduced-dimensional
sensor signals ỹk = [yH

k zH−kzH−k]H where the subscript −k
refers to the concatenation of the compressed sensor signals
of the other nodes: zH−k = [zH1 ...z

H
k−1z

H
k+1...z

H
K ]H and zH−k =

[zH1 ...z
H
k−1z

H
k+1...z

H
K ]H .

To be able to perform the same operations as in the central-
ized PK-GEVD-MWF on these reduced-dimensional sensor
signals, the following subspace matrix H̃k and corresponding
blocking matrix B̃k are defined:

H̃k =

Hk 0
0 IK−1

0 0

 ; B̃k =

Bk 0
0 0
0 IK−1

 . (16)

2In an iteration of Algorithm 1 in Section III, the inversion of a reduced-
dimensional matrix B̃H

q Rñqñq B̃q and the GEVD of a reduced dimensional
matrix pencil {Rŷq ŷq ,Rn̂qn̂q} are needed.
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The steering vector subspace for yk is defined by Hk and
so represented by Hk and Bk in H̃k and B̃k respectively.
The steering vector subspace for z−k is unknown and thus
represented by IK−1 in H̃k and by

[ ]
in B̃k. The steer-

ing vector subspace for z−k is empty because these signals
are compressed versions of local noise references (BH

k yk =
BH

k aks̆ + BH
k nk = BH

k nk), where the signal component is
already locally canceled and is represented by

[ ]
in H̃k and

by IK−1 in B̃k.

The PK-GEVD-DANSE algorithm is presented in Algo-
rithm 1. This is a block-iterative round-robin algorithm, where
the updating node performs the same operations as in the
centralized algorithm, but here with locally defined reduced-
dimensional variables Fk,Ck,ŴGEVD,k and w̃k. The defi-
nition of the local compression matrix pi

k is given in (22)
and indeed corresponds to the current estimate of the MWF
coefficients w̃i

k corresponding to the local sensor signals yk as
explained before. The next subsection will provide an intuitive
explanation for the definition of the local compression vector
λi
k of the local noise references BH

k yk in (21). A proof
of convergence showing that Algorithm 1 converges to the
PK-GEVD-MWF (14) for any random initialization of the
compression matrices, will be provided elsewhere.

Algorithm 1: PK-GEVD-DANSE algorithm
1 - Construct H̃k and B̃k using node k’s prior knowledge,

initialize p0
k and λ0

k as random matrices, ∀k ∈ K.
- i← 0 and q ← 1.

2 - All nodes k ∈ K broadcast N compressed observations of
zk = piH

k yk and zk = λiH
k BH

k yk and construct locally

ỹk = [yH
k zH−kz

H
−k]

H . (17)

3 - Node q estimates Rñqñq based on the observations and
updates its local LCMV-beamformer:

Fi+1
q =

(
B̃H

q Rñqñq B̃q

)−1

B̃H
q RñqñqH̃q (18)

Ci+1
q = H̃q − B̃qF

i+1
q , ŷq = Ci+1H

q ỹq. (19)

- Node q estimates Rŷq ŷq and Rn̂qn̂q based on the
observations and constructs Ŵi+1

GEVD,q as in (15) using the
GEVD of {Rŷq ŷq ,Rn̂qn̂q} and updates its local variables:

w̃i+1
q = Ci+1

q Ŵi+1
GEVD,qH̃

H [1 0]H (20)

λi+1
q =

[
IMq−Lq 0

] (
B̃H

q Rñqñq B̃q

)−1

B̃H
q Rỹq ỹq w̃

i+1
q

(21)
pi+1
q =

[
IMq 0

]
w̃i+1

q . (22)

- All other nodes do not change their variables:

w̃i+1
q = w̃i

q,λ
i+1
k = λi

k,p
i+1
k = pi

k. (23)

4 - For the N new observations, each node k ∈ K generates an
estimate of its desired signal dki ≈ w̃i+1H

q ỹq .
5 - i← i+ 1, q ← (q mod K) + 1 and return to step 2.

B. Comparison with GEVD-DANSE

A related algorithm to PK-GEVD-DANSE is GEVD-
DANSE [5], which also aims to estimate the centralized
GEVD-based MWF in a distributed way, but without the
ability to introduce prior knowledge. GEVD-DANSE only
requires 1 signal to be communicated per node, compared
to 2 signals for PK-GEVD-DANSE. The extra communicated
signal of PK-GEVD-DANSE is a compressed version of
the local noise references BH

k yk. From simulations it is
observed that, upon convergence of PK-GEVD-DANSE, λk

is equal to the corresponding part in its centralized variant
λk =

(
BHRnnB

)−1
BHRyyw̆k. This can be shown to be

the optimal compression of the noise references λHBHy
to still be able to let a similar procedure as in Section II,
attain the same PK-GEVD-MWF (14) as when all the noise
references BHy are used. One can also show that in the case
where BHRyyB is exactly equal to BHRnnB, λk and so
λk become equal to 0,∀k ∈ K (so in fact unnecessary for
PK-GEVD-DANSE) and the obtained node-specific MWF’s
in PK-GEVD-DANSE and GEVD-DANSE will be the same.
The compressed version of the local noise references thus
accounts for estimation mismatch in Ryy and Rnn, since in
the ideal case BHRyyB should be equal to BHRnnB. From
the simulations in the next section, it will be clear that the PK-
GEVD-MWF is still performing better in terms of minimizing
the objective in (4) than the GEVD-based MWF, justifying the
extra communication.

IV. SIMULATIONS

To demonstrate the convergence and optimality of the PK-
GEVD-DANSE algorithm, the following scenario is used. The
scenario consists of 4 nodes with each Mk = 10 sensor
signals, one desired source s̆[t] and 5 undesired noise sources
n̆[t]. Node 1 and node 2 have access to an exact3 (normalized)
estimate of their steering vector a1 and a2, denoted by H1

and H2 respectively. These are for instance linear microphone
arrays or binaural hearing aids with the desired source in
their broadside direction. The first 3 sensor signals of node
3 correspond directly to 3 of the 5 undesired noise sources.
This is for example the case if node 3 has access to a signal
that is played by a loudspeaker present in the scene. Finally,
node 4 has the prior knowledge that its first 3 sensors do not
observe the desired source, which is for example located at the
other side of a signal dampening wall, but they do observe the
5 noise sources. The prior knowledge of node 3 and 4 can thus
be captured by the following unitary matrix:

H3 = H4 =

[
0

I7×7

]
. (24)

For simplicity the PK-GEVD-MWF algorithm is run in
batch-mode4 for a single frequency bin (in the case of speech

3The influences of estimation errors in the prior knowledge is part of future
work.

4Note that in reality the algorithm will be executed in an adaptive, time-
recursive manner, where each iteration is performed over a different signal
segment and the same block of samples will never be broadcast again.
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signals). Monte-Carlo (MC) simulations are conducted and
compared with the convergence of GEVD-DANSE and the
output of the centralized eigenvalue decomposition based-
MWF (EVD-MWF), where the best rank 1 approximation of
Ryy −Rnn is used to approximate Rss [6], the centralized
GEVD-MWF and the centralized PK-GEVD-MWF. In every
MC run and ∀k ∈ {1, 2, 3, 4}, a new random desired speech
source steering vector ak and new random undesired noise
steering vectors Dk are generated from a 0-mean complex
Gaussian distribution with variance 1, with the following
constraints to satisfy the scenario. The first 3 components of a3

and a4 are always equal to zero and the first 3 rows of D3 are[
I3×3 0

]
. Also N = 1000 samples of s̆[t] (being active for

50% of the time), n̆[t] and a random noise component nk[t] (to
model sensor noise) are generated to create the sensor signals

yk[t] = aks̆[t] + Dkn̆[t] + nk[t] ∀k ∈ {1, 2, 3, 4} (25)

by drawing them from a 0-mean complex Gaussian distribu-
tion. The variances are chosen such that the average SNR over
all the sensors observing the desired source, is equal to 0 dB.

The upper part of Fig. 1 shows the median (over 200 MC
runs) of the decrease in the L2-objective function:∑

t,k

1

NK
‖dk[t]− dik[t]‖22 (26)

as a function of the number of iterations of the PK-GEVD-
DANSE and shows the result when the centralized EVD-
MWF, GEVD-MWF and PK-GEVD-MWF are used to esti-
mate dk[t]. The GEVD-MWF is able to reduce the objective
function compared to the EVD-MWF, but the addition of the
prior knowledge to obtain the centralized PK-GEVD-MWF
reduces the objective even further. The bottom part of Fig. 1
shows the median (over 200 MC runs) of the squared error
between the centralized filter w̌k and the local filter w̃i

k

(converted to a centralized filter via the compression vectors
pi
k and λi

k) averaged over all the nodes. This same is done
for the GEVD-DANSE algorithm. Convergence to the machine
machine precision is observed. The convergence speed of PK-
GEVD-DANSE is higher then the convergence of the GEVD-
DANSE algorithm, due to the fact that nodes in PK-GEVD-
DANSE receive more compressed signals from the other nodes
and have by consequence more degrees of freedom to solve
their local optimization problem better.

V. CONCLUSIONS

In this paper, the centralized PK-GEVD-MWF has been
derived as an extension to the centralized GEVD-based MWF
by introducing partial prior knowledge of the desired source
steering vector. Also a distributed round-robin algorithm has
been presented to show that the output of this filter can be
computed in a fully-connected WSN in a distributed way.
Instead of communicating all the sensor signals, each node
communicates a compressed version of its sensor signals, re-
ducing the communication and computational cost, compared
to the centralized approach. The algorithm has been validated
by means of numerical simulations.
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