
Generalizing Graph Convolutional Neural Networks
with Edge-Variant Recursions on Graphs

Elvin Isufi, Fernando Gama, and Alejandro Ribeiro

Abstract—This paper reviews graph convolutional neural net-
works (GCNNs) through the lens of edge-variant graph filters.
The edge-variant graph filter is a finite order, linear, and
local recursion that allows each node, in each iteration, to
weigh differently the information of its neighbors. By exploiting
this recursion, we put forth a general framework for GCNNs
which considers state-of-the-art solutions as particular cases. This
framework results useful to i) understand the tradeoff between
local detail and the number of parameters of each solution and ii)
provide guidelines for developing a myriad of novel approaches
that can be implemented locally in the vertex domain. One of
such approaches is presented here showing superior performance
w.r.t. current alternatives in graph signal classification problems.

Index Terms—Graph convolutional neural networks; graph
signal processing; graph filters; edge-variant.

I. INTRODUCTION
Graph convolutional neural networks (GCNNs) are gaining

momentum in addressing a variety of classification and re-
gression tasks for data that live in irregular spaces, such as
network data [1]. With the aim to replicate the success of
traditional CNNs, GCNNs play a fundamental role in semi-
supervised learning on graphs and classifying different graph
signals (i.e., values indexed by the nodes of the graph).

A central aspect of GCNNs is the extension of the con-
volution operation to graph signals. The seminal work [2]
defined convolution as the point-wise multiplication in the
graph spectral domain between the projected graph signal in
this domain and the transfer function of a learnable filter. Such
an approach finds solid grounds on graph signal processing
(GSP) theory [3], where the graph spectrum plays the role
of the Fourier basis for graph signals. Subsequently, several
works exploited this connection and proposed computationally
lighter GCNN models. In particular, [4]–[7] used the so-called
polynomial graph filters [3], while [8], [9] relied on graph
filters having a rational transfer function [10]. Differently, [11]
designed architectures by using the node-variant (NV) graph
filters [12], while [13] introduced MIMO approaches to learn
from multiple features.

While the above works introduce techniques that extend
CNNs to graphs, they are mostly based on (well-motivated)
analogies with classical neural networks. Such a strategy
presents, however, its own limitations towards extending these
methods to more involved ones that better exploit the graph.

The main aim of this paper is to provide a general frame-
work that unifies state-of-the-art GCNN architectures facili-
tating comparison, showing the limitations, and highlighting

The authors are with the Department of Electrical & Systems Engineering,
University of Pennsylvania, 19104 Philadelphia, United States. This work is
supported by NSF CCF 1717120, ARO W911NF1710438, ARL DCIST CRA
W911NF-17-2-0181, ISTC-WAS and Intel DevCloud. E-mails: {eisufi, fgama,
aribeiro}@seas.upenn.edu.

their potential. For such a goal, it explores the so-called
edge-variant (EV) graph filters [14], [15]. The EV graph
filter is a local, linear, and finite-order recursion in the node
domain where each node weighs differently, in each iteration,
the information in its neighborhood. Therefore, it presents
the most general linear and local operation that a node can
do –gather information from all neighbors and weight each
of them differently. This local property puts the EV as a
computationally efficient candidate (only local information is
exchanged) for capturing detail at the node connection level.

Nevertheless, in the general form, the learnable parameters
of the EV graph filter depend on the number of graph edges.
To tackle the latter, we first show how state-of-the-art solutions
fall under the EV recursion and how they impose parsimonious
models on the learnable parameters, rendering their number
independent of the graph dimensions. Then, we explore such
insights to provide guidelines for designing a variety of novel
architectures in the spirit of the EV recursion whose number
of parameters is independent of the graph dimensions.

In a nutshell, the contributions of this paper are: i) To
formulate a general framework for GCNNs through EV graph
filters. ii) To show how the state-of-the-art approaches are
specific parameterizations of this EV recursion. iii) To present
rigorous design guidelines for GCNNs based on the EV recur-
sion that preserve locality and whose number of parameters
is independent of the graph dimension. iv) To introduce one
new such an architecture and show its superior performance
for graph signal classification tasks.

II. BACKGROUND
A. Graphs and graph filters

Let G = {V, E} be a weighted graph with vertex set V =
{1, . . . , N} of cardinality |V|=N and edge set E ⊆ V × V
composed of |E|=M ordered pairs (i, j)∈ E iff there is an
edge between nodes i and j. For each node i, we define the
neighborhood set Ni = {j : (j, i) ∈ E} as the set of nodes
connected to i. The sparsity of the edge set of G is represented
by an N×N matrix S, named the graph shift operator matrix,
where [S]i,j 6=0 if (j, i)∈E or i=j. Candidates for S are the
graph adjacency W, the graph Laplacian matrix (undirected
graphs) or any of their normalizations. For generality, in the
sequel, we will focus on directed graphs.

Along with G, consider a set of signal values (features)
x = [x1, . . . , xN]T ∈ RN in which component xi resides on
node i. By exploiting the coupling between the graph G and
the graph signal x, it is possible to compute a graph harmonic
analysis for x similarly to the one performed for temporal
and image signals. Specifically, given the eigendecomposition
S = UΛU−1, the graph Fourier transform (GFT) of x is

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

x̂ = U−1x. Likewise, the inverse transform is x = Ux̂.
Here, U contains along the columns the oscillating modes
of the graph and x̂ are the respective Fourier coefficients. The
eigenvalues Λ represent the spectral support for x̂ and are
commonly referred to as the graph frequencies [3].

Given the Fourier expansion, we can now filter x directly
in the spectral domain. That is, for h : C → R being the
filter spectral response (transfer function), the filter output
ŷ = h(Λ)x̂ is computed as the convolution (pointwise mul-
tiplication in the spectral domain) between the filter transfer
function h(Λ) and the GFT of x. By means of the inverse
GFT, the vertex domain output becomes

y = H(S)x and H(S) = Uh(Λ)U−1. (1)

However, (1) is not local, since in computing the output yi,
node i needs access to the graph signal of non-neighboring
nodes. To account for the locality, we can define the filtering
operation directly in the vertex domain as the aggregation of
neighboring information. The node i output for an order one
local filter is

yi =
∑

j∈Ni∪i
φi,jxj (2)

where the scalar parameter φi,j weighs the information of the
neighboring node j. Nevertheless, this direct vertex domain
definition does not enjoy a spectral behavior analysis limiting
the connection with the convolution operation.

One way to link the spectral and the vertex domain filtering
is to consider the polynomial graph filters [3] with output

y = φ0INx + φ1Sx + . . .+ φKSKx

, φ0w
(0) + φ1w

(1) + . . .+ φKw(K).
(3)

Due to the locality of S, y can be obtained in the vertex
domain through local information exchange. The state w(0)

is simply the graph signal, while w(1) = Sx consists of one-
hop information exchange between adjacent nodes. The higher
order states w(k) = Skx are computed recursively as w(k) =
Sw(k−1), i.e., by exchanging with the neighbors the previous
intermediate state w(k−1). Such an implementation amounts
for a complexity of order O(MK). By means of the GFT, the
filtering operation in (3) has the transfer function

h(Λ) =
K∑
k=0

φkΛ
k. (4)

Therefore, we conclude that the output y in (3) consists of the
convolution between a graph filter with a polynomial transfer
function (4) and x. This filter enjoys a local implementation
and captures detail in a neighborhood of radius K from the
node.
B. Edge-variant graph filters

The edge-variant graph filter is a finite order recursion im-
plemented in the vertex domain in the form similar to (2) [15].
Let {Φ(k)}Kk=1 ∈ RN×N be a collection of K matrices that
share the sparsity pattern of IN + S. The intermediate states
of the EV filter are computed recursively as w(1) = Φ(1)x;
w(2) = Φ(2)w(1) = Φ(2)Φ(1)x; and

w(k) = Φ(k)w(k−1) = Φ(k)Φ(k−1) . . .Φ(2)Φ(1)x. (5)

Since Φ(1) shares the support with S + IN , the state w(1)

accounts also for the scaling of x through the diagonal
elements (i.e., each node i scales its own signal with a different
parameter φ(1)i,i). The higher order states w(k) for k > 1 are
again obtained recursively since the parameter matrices Φ(k)

respect the graph structure. Put differently, each Φ(k) considers
a different parameter φ(k)i,j for each edge (j, i) ∈ E and adds
potential self-loops through φ

(k)
i,i . Node i computes then the

kth order state as

w
(k)
i =

∑
j∈Ni∪i

φ
(k−1)
i,j w

(k−1)
j . (6)

By defining Φ(k:1) =
∏k
κ=1 Φ(κ) and putting back together

all terms in (5), the output of an order K EV graph filter is

y =
K∑
k=0

Φ(k:1)x =

H(S)︷ ︸︸ ︷
K∑
k=1

(
k∏
κ=1

Φ(κ)

)
x. (7)

The total number of parameters of the edge-variant graph
filter is K(M + N), which is in general smaller than the
N2 parameters of an arbitrary linear transform y = Hx. In
computing the output y in (7) the EV graph filter incurs in
an overall computational complexity of order O(K(M +N))
which is similar to that of (3) since in general M ≈ N or we
can consider an EV recursion without self-loops.

The ability to capture local detail at the edge level and
the reduced implementation complexity is leveraged next to
define graph neural networks (GNN) with a controlled number
of parameters and computational complexity matched to the
sparsity pattern of the graph.

III. EDGE-VARIANT GRAPH NEURAL NETWORKS

Consider a training set T = {xi, zi}|T |i=1 composed of |T |
examples of inputs xi ∈ X and output representations zi ∈ Z .
A GNN leverages the underlying graph representation of the
data and learns a model f(·;S) : X → Z such that z̃i =
f(xi;S) minimizes some loss function L(z̃i, zi) for zi ∈ T
and generalizes well for zi /∈ T .

To capture several levels of detail, model f(·,S) is lay-
ered into the cascade of L functions f(·,S) = fL(·,S) ◦
fL−1(·,S) ◦ . . . ◦ f1(·,S) each consisting of a succession of
linear transforms and nonlinearities. Layer l produces as output
a collection of Fl higher level signal features obtained through
processing the Fl−1 features zl−11 , . . . , zl−1Fl−1

computed at the
previous layer. The f th higher level feature is computed as

zlf = σl

Fl−1∑
g=1

Hl
f,g(S)z

l−1
g

 (8)

where σl(·) represents the nonlinearity that might be point-
wise (e.g., ReLU) or graph dependent [16] and Hl

f,g(S)
leverages the graph structure to relate the gth input feature
zl−1g to the f th output feature zlf .

The graph basically serves as a parameterization to reduce
both the computational complexity and the number of param-
eters. GCNNs, in particular, consider Hl

f,g(S) to be a graph

2019 27th European Signal Processing Conference (EUSIPCO)

filter that has a spectral interpretation such as (1) or (4). In the
sequel, we consider Hl

f,g(S) to be an EV graph filter and show
that current approaches represent different parameterizations to
induce the spectral convolution into the EV GNN.

A. Properties of the edge-variant neural network layer
From (7) and (8), we build the EV GNN layer as

Hl
f,g(S) =

K∑
k=1

Φ
l,(k:1)
f,g (9)

characterized by the following properties.
First, it does not require the knowledge of S, but only of its

support. This is because, differently from current solutions, it
will learn from the training data T a collection of K param-
eter matrices Φ(k), where each of them acts as a different
graph shift operator. Therefore, the EV GNN represents a
robust learning strategy for data residing on graphs whose
edge weights are known up to some uncertainty, known only
partially, or not known at all, such as biological networks [17].

Second, the computational complexity of each layer is linear
in the graph parameters. By setting, F = maxl Fl, the overall
complexity of the EV layer is of order O(KF 2(M + N))
matching that of current state-of-the-art GCNN approaches.

Third, the number of parameters per layer is, at most,
KF 2(M +N). The latter, although allowing the EV to have
the maximum degrees of freedom given a topology, may often
be a limitation for large graphs or when |T | is small. Our
goal in the next section is, therefore, to show that GCNN
layers proposed in the literature are particular cases of (9).
Establishing these relationships allows the proposal of novel
solutions that increase the descriptive power while preserving
an efficient implementation complexity.

B. Parametrizations
Polynomial GCNN. Several variants of GCNNs introduced

in the literature use at each layer graph filters of the form

H(S) =

K∑
k=0

φkS
k (10)

where in the filter definition H(S) = Hl
f,g(S) we omitted the

layer and feature indices to simplify notation. This is the case
of [6], [7] which use general polynomials and [4], [5] that
consider Chebyshev polynomials.

These filters can be expressed in the form (9) by restricting
the parameter matrices to Φ(k:1) = φkS

k for k > 1 and
Φ(1)=φ0IN+φ1S. In other words, the EV and the polynomial
recursions represent two extremes to implement graph filters
locally. The EV recursion allows each node i to learn for
each iteration k a different parameter φ(k)i,j that reflects the
importance of j’s node features to node i. The polynomial
implementation instead forces all nodes to weigh the informa-
tion of all neighbors with the same parameter φk within the
kth iteration. However, this restriction makes the number of
parameters (K + 1)F 2 independent from M and N .

This way of parameterizing the EV recursion creates new
opportunities for proposing a myriad of intermediate solutions
that extend (10) towards the edge-variant implementation (9).

One such an approach may be a recursion that in addition to
(10) considers parameters also for the most critical edges (e.g.,
edges without which the graph becomes disconnected).

Remark 1: Along with the above works, also [18]–[20] and
[8], [9] fall under the lines of the polynomial filtering (10).
In specific, [18] considers single shifts on graphs using as
graph shift operator a learnable weight matrix, [19] considers
a Gaussian kernel to mix the neighboring node information,
while [20] uses random walks. The works in [8], [9], although
aiming to build a GCNN layer by using graph filters with
a rational transfer function, approximate the inherited matrix
inverse in the vertex domain by a finite iterative algorithm.
This finite approximation implicitly transforms these tech-
niques into polynomial recursions whose order depend on the
number of iterations (see also [10] for more detail). �

Spectral GCNN. We here establish a link between the edge-
variant recursion (9) and the spectral GCNN [2] to provide
more insights on its convolutional behavior. The spectral
GCNN exploits (1) and learns directly the filter a transfer func-
tion h(Λ) = diag(h(λ0), . . . , h(λN−1)). To keep the number
of parameters independent from N , h(Λ) is parameterized as

h(Λ) = diag(Bb) (11)
where B ∈ RN×b is a prefixed kernel matrix and b ∈ Rb are
the b � N learnable parameters. Therefore, the number of
parameters for each layer is at most bF 2, while the computa-
tional complexity is of order O(N2) required to compute the
GFT of the features. Additionally, such an approach requires
the eigendecomposition of S (order O(N3) to be computed
once) and the learned filter H(S) = Udiag(Bb)U−1 does not
capture the local detail around each vertex.

Nevertheless, this spectral interpretation is useful to under-
stand the EV behavior. We can force the EV recursion (9) to
have a spectral response by restricting all coefficient matrices
to share the eigenvectors with S, i.e., Φ(k) = UΛ(k)U−1 [15].
Then, the EV transfer function becomes

h(Λ) =

K∑
k=1

(
k∏
κ=1

Λ(k)

)
. (12)

Subsequently, let I be the index set defining the zero entries
of S + IN . The fixed support condition for each Φ(k) is

CIvec
(
Φ(k)

)
= 0|I| (13)

where CI ∈ {0, 1}|I|×N
2

is a selection matrix whose rows
are those of IN2 indexed by I, vec(·) denotes the vectorization
operation, and 0|I| is the |I|× 1 vector of all zeros. From the
properties of the vec(·) operator, (13) becomes

CIvec
(
UΛ(k)UH

)
= CIvec

(
U ∗UH

)
λ(k) = 0|I| (14)

where “*” denotes the Khatri-Rao product and λ(k) =
diag(Λ(k)) is the N × 1 vector composed by the diagonal
elements of Λ(k). Put differently, (14) implies

λ(k) ∈ null
(
CIvec

(
U ∗UH

))
. (15)

Finally, by considering BU,I as a basis that spans the
nullspace of CIvec

(
U ∗UH

)
, we can expand λ(k) as λ(k) =

BU,Iµ
(k) and write (12) as

2019 27th European Signal Processing Conference (EUSIPCO)

h(Λ) =
K∑
k=1

(
k∏
κ=1

diag
(
BU,Iµ

(k)
))

(16)

for some basis expansion coefficients µ(k).
The eigendecomposition of Φ(k) implicitly reduces the

total number of layer parameters from KF 2(M + N) to
KF 2rank(BU,I) with rank(BU,I) � N . That is, there is
a subclass of the EV recursion that respects the operation
of convolution, but, differently from (11), it captures local
detail in the vertex domain and enjoys a linear implementation
complexity. This subclass has also analogies with (11), which
is obtained by setting K = 1, BU,I = B, and µ(1) = b.

In general, we may conclude that the EV recursion imple-
ments a GNN layer that goes beyond convolution. Drawing
analogies with linear system theory, the GCNN approaches
behave as a linear time-invariant (now shift-invariant [3]) filter,
while the EV graph filter behaves as linear time-varying (now
shift-varying; a different shift per (k) filter that trades the
convolutional interpretation with the ability to capture time-
varying (now shift-varying) detail.

Node-variant GCNN. The idea to propose GNNs that
extend convolution is also considered in [11], which proposed
an architecture having as graph filter the recursion

H(S) =
K∑
k=0

diag
(
CBφ

(k)
B

)
Sk (17)

where B ⊂ V is a set of privileged nodes (e.g., the |B| nodes
with the highest degree), CB ∈ {0, 1}N×|B| is a tall binary
matrix, and φ

(k)
B ∈ R|B| is a vector of parameters for the

nodes in B. In short, (17) learns for each shift, |B| different
coefficients for the nodes in B and then maps them through
CB to the remaining nodes V\B.

This filter is another way to restrict the EV degrees
of freedom, which parameterizes the coefficient matrices to
Φ(1) = diag

(
CBφ

(0)
B

)
+ diag

(
CBφ

(1)
B

)
S and Φ(k:1) =

diag
(
CBφ

(k)
B

)
Sk for k > 1. That is, (17) is an intermedi-

ate approach between the polynomial (10) and the EV (9)
recursions and allows each node i ∈ B to learn, for each k,
a different parameter φ(k)i that reflects the importance of all
its neighborhood to node i. The total number of parameters
per layer is at most (K + 1)F 2|B| while the computational
complexity is similar to that of (10).

This different way of parameterizing the EV recursion
provides alternative choices to build new intermediate archi-
tectures that lever the idea of privileged nodes while giving
importance to the edge-based detail. In the sequel, we propose
one such an extension that merges insights from the EV, the
polynomial, and the NV architecture.

C. Hybrid edge-variant neural network layer

The hybrid edge-variant (HEV) layer considers the linear
operation in (8) to be a graph filter of the form

H(S) =
K∑
k=0

(
k∏
κ=0

Φ
(κ)
B + φkS

k

)
(18)

where Φ
(0)
B ∈ RN×N is a diagonal matrix whose ith diagonal

element φ(0)i,i 6= 0 iff node i belongs to the privileged set B ⊂
V; {Φ(k)

B }Kk=1 ∈ RN×N are a collection of K matrices whose
(i, j)th element φ(k)i,j 6= 0 iff i ∈ B and j ∈ Ni∪i; and {φk}Kk=0

are a collection of K + 1 scalars. Put simply, recursion (18)
allows nodes in B to learn node-varying parameters for k = 0
and edge-varying parameters for k ≥ 1, while the nodes in
V\B learn global parameters similar to (10).

This approach represents yet another intermediate architec-
ture between the full convolutional ones and the full EV. By
setting NB,max = maxi∈B |Ni| as the maximum number of
neighbors for the nodes in B, the overall number of parameters
per layer is at most F 2((K+1)+ |B|+K|B|NB,max). Finally,
the HEV implementation cost is of order O(KF 2(2M +N)).

IV. NUMERICAL RESULTS

We compare the proposed edge-variant and hybrid edge-
variant architectures with the spectral, polynomial, and the
node-variant alternatives on a source localization and an author
attribution problem. For both experiments, we designed all
architectures (except for the spectral GCNN) to have the same
computational cost. The code to generate these results can be
found at https : //github.com/alelab− upenn/edgenets.

A. Source Localization
Setup. The goal of this experiment is to find out which com-

munity in a stochastic block model (SBM) graph is the source
of a diffusion process by observing different diffused signals
originated at different (unknown) communities at different
(unknown) time instants. G is an undirected SBM graph of
N = 50 nodes divided equally into C = 5 communities with
respective intra- and inter-community edge probabilities of 0.8
and 0.2. The initial graph signal δi ∈ RN is a Kronecker delta
centered at node i and its realization at time t is xt = Stδi
with S = W/λmax(W). We generated the training set {x, i}
comprising 10, 000 samples by selecting uniformly at random
both i ∈ {1, . . . , C} and t ∈ {0, . . . , N}. We then tested the
different approaches on 200 new samples and averaged the
performance over 10 different data and 10 different graph
realizations for an overall of 100 Monte-Carlo runs.

Models and results. We considered seven architectures
each of them composed of the cascade of a graph filtering
layer with ReLU nonlinearity and a fully connected layer
with softmax nonlinearity. The architectures are: a) a spectral
GCNN (11) with B being a cubic spline kernel and b = 5; b)
a polynomial GCNN (10) of order K = 4; c) two NV GNNs
(17) of order K = 4 and |B| = 5 privileged nodes selected
by bi) maximum degree and bii) spectral proxies [21]; d) an
EV GNN (9) of order K = 4; and e) two HEV GNNs (18) of
order K = 4 and |B| = 5 privileged nodes selected similarly
to the NV case. We used the ADAM optimizer with a learning
rate µ = 0.001 and decaying factors β1 = 0.9 and β2 = 0.999
run over 20 epochs with batches of size 100.

Table I shows the obtained results where we see that because
of their increased capacity the EV and the HEV outperform
the other alternatives. We observe that the hybrid approaches
exploit better the edge-varying part when B is composed of
the nodes with the highest degree.

2019 27th European Signal Processing Conference (EUSIPCO)

TABLE I
AVERAGE PERFORMANCE (AND STD. DEV.) FOR THE SOURCE

LOCALIZATION PROBLEM.

Model Accuracy
Spectral 26.89(± 0.87)%
Polynomial 74.55(± 7.32)%
Node Variant (NV) Degree 74.77(± 7.77)%
Node Variant (NV) S. Proxies 75.62(± 8.19)%
Edge Variant (EV) 85.47(±10.77)%
Hybrid EV (HEV) Degree 80.53(±10.21)%
Hybrid EV (HEV) S. Proxies 75.37(± 8.20)%

B. Authorship Attribution

Setup. In this experiment, we aim to classify if a text ex-
cerpt belongs to Edgar Allan Poe or to any other contemporary
author. For each text excerpt, we built the graph from the word
adjacency network (WAN) between function words that act as
nodes. These WANs serve as stylistic signatures for the author
(see [22] for full details). Fixed then WAN for Poe, we treat
the frequency count of the function words as a graph signal.

In particular, we considered 846 text excerpts by Poe and
randomly split the dataset into 608 training, 68 validation, and
170 testing texts. We sumed the adjacency matrices of the
WANs obtained from the 608 training texts to get the Poe’s
signature graph. We completed the training, validation, and test
sets by adding respectively other 608, 68, and 170 randomly
selected texts by contemporary authors. We set S to be the
adjacency matrix of the Poe’s signature graph and averaged
the performance over 10 different data splits.

Models and results. We analyzed the same architectures as
in the previous section but set the number of output features to
F = 2, the recursion orders to K = 1, b = 2 for the spectral
GCNN, and |B| = 2. We used the same ADAM optimizer for
training now over 80 epochs with batch sizes of 100 samples.

The results in Table II show that the hybrid approaches offer
the best performance highlighting the potential of solutions
that consider both edge-dependent and global coefficients. In
fact, the polynomial model with global coefficients suffers the
most in this experiment.

V. CONCLUSION

We proposed a general framework that unifies 11 state-
of-the-art GCNN architectures into one recursion, named the
edge-variant recursion. This unification highlighted the differ-
ent tradeoff between the number of parameters and the amount
of local detail that each approach adopts. Moreover, it shows
rigorous ways to choose different tradeoffs and come up with
a novel and ad hoc architecture for a problem at hand that is
implemented locally in the vertex domain. We here proposed
one, among many, extension and showed that it outperforms
current solutions for graph signal classification tasks.

REFERENCES

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral
networks and deep locally connected networks on graphs,”
arXiv:1312.6203v3 [cs.LG], 21 May 2014. [Online]. Available:
http://arxiv.org/abs/1213.6203

TABLE II
AVERAGE PERFORMANCE (AND STD. DEV.) FOR THE AUTHORSHIP

ATTRIBUTION PROBLEM ON TEXT EXCERPTS BY EDGAR ALLAN POE.

Model Accuracy
Spectral 88.88(± 1.50)%
Polynomial 79.88(±15.31)%
Node Variant (NV) Degree 88.88(± 2.62)%
Node Variant (NV) S. Proxies 86.12(± 5.94)%
Edge Variant (EV) 89.00(± 2.11)%
Hybrid EV (HEV) Degree 89.18(± 1.99)%
Hybrid EV (HEV) S. Proxies 90.00(± 1.21)%

[3] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106(5), pp. 808–828, 2018.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th Int. Conf. Learning Representations.
Toulon, France: Assoc. Comput. Linguistics, 24-26 Apr. 2017.

[5] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Annu.
Conf. Neural Inform. Process. Syst. 2016. Barcelona, Spain: NIPS
Foundation, 5-10 Dec. 2016.

[6] J. Du, S. Zhang, G. Wu, J. M. F. Moura, and S. Kar, “Topology
adaptive graph convolutional networks,” arXiv:1710.10370v2 [cs.LG],
2 Nov. 2017. [Online]. Available: http://arxiv.org/abs/1710.10370v2

[7] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” IEEE Trans.
Signal Process., vol. 67, no. 4, pp. 1034–1049, Feb. 2019.

[8] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Trans. Signal Process., vol. 67(1), pp. 97–107, Jan. 2019.

[9] F. M. Bianchi, D. Grattarola, C. Alippi, and L. Livi, “Graph neural
networks with convolutional ARMA filters,” Feb. 2019. [Online].
Available: http://arxiv.org/abs/1901.01343

[10] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” IEEE Trans. Signal Process., vol. 65, no. 2, pp.
274–288, Jan. 2017.

[11] F. Gama, G. Leus, A. G. Marques, and A. Ribeiro, “Convolutional
neural networks via node-varying graph filters,” in 2018 IEEE Data
Sci. Workshop. Lausanne, Switzerland: IEEE, 4-6 June 2018, pp. 1–5.

[12] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Process., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.

[13] F. Gama, A. G. Marques, A. Ribeiro, and G. Leus, “MIMO graph filters
for convolutional networks,” in 19th IEEE Int. Workshop Signal Process.
Advances in Wireless Commun. Kalamata, Greece: IEEE, June 2018.

[14] M. Coutino, E. Isufi, and G. Leus, “Distributed edge-variant graph
filters,” in 2017 IEEE Int. Workshop Comput. Advances Multi-Sensor
Adaptive Process. Curacao, Dutch Antilles: IEEE, 10-13 Dec. 2017.

[15] M. A. C. Minguez, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Transactions on Signal Processing, 2019.

[16] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Median activation
functions for graph neural networks,” in 44th IEEE Int. Conf. Acoust.,
Speech and Signal Process. Brighton, UK: IEEE, 12-17 May 2019.

[17] B. Wang, A. Pourshafeie, M. Zitnik, J. Zhu, C. Bustamante, S. Bat-
zoglou, and J. Leskovec, “Network enhancement as a general method to
denoise weighted biological networks,” Nature Communications, vol. 9,
no. 3108, pp. 1–8, Aug. 2018.

[18] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in 2017 IEEE Comput. Soc.
Conf. Comput. Vision and Pattern Recognition, Honolulu, July 2017.

[19] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model CNNs,” in 2017 IEEE Comput. Soc. Conf. Comput. Vision
and Pattern Recognition. Honolulu, HI: IEEE, July 2017.

[20] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in 30th Annu. Conf. Neural Inform. Process. Syst. Barcelona, Spain:
NIPS Foundation, 5-10 Dec. 2016.

[21] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Trans.
Signal Process., vol. 64, no. 14, pp. 3775–3789, July 2016.

[22] S. Segarra, M. Eisen, and A. Ribeiro, “Authorship attribution through
function word adjacency networks,” IEEE Trans. Signal Process.,
vol. 63, no. 20, pp. 5464–5478, Oct. 2015.

2019 27th European Signal Processing Conference (EUSIPCO)

