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ABSTRACT 

 
In this work, a new approach is presented for unmixing 
remote sensing hyperspectral data. This approach considers 
a linear mixing model that is introduced in these 
investigations to handle the spectral variability 
phenomenon, which is usually observed in the considered 
data and which is here modeled in a multiplicative form. 
The  proposed algorithm, which is based on a pixel-by-pixel 
nonnegative matrix factorization method, uses multiplicative 
update rules for minimizing a cost function that takes into 
account the introduced linear mixing model. Tests, by 
means of realistic synthetic data, are conducted to evaluate 
the performance of the proposed approach, and the obtained 
results are compared to those of methods from the literature. 
These test results show that the proposed approach 
outperforms all other tested methods. 
 

Index Terms— Hyperspectral imaging, linear spectral 
unmixing, spectral variability, nonnegative matrix 
factorization, multiplicative update rules 
 

1. INTRODUCTION 
 
Remote sensing hyperspectral sensors, with high spectral 
resolution, collect information in the visible and infrared 
wavelength domains, therefore allowing accurate 
classification of materials present in imaged scenes. But 
these sensors are characterized by a low spatial resolution, 
which results in mixed pixels. Consequently, each observed 
pixel-spectrum of such data is usually a mixture of 
contributions from a number of pure-material-spectra (also 
called endmember-spectra), which are present in the 
considered data. This mixture is commonly assumed to be 
linear [1] and unsupervised linear spectral unmixing (LSU) 
approaches are considered to linearly and blindly unmix all 
observed pixel-spectra in order to retrieve a collection of 
unknown endmember-spectra, and a set of associated 
unknown abundance coefficients with the usual sum-to-one 
constraint. 

Classical LSU methods, which can be viewed as typical 
linear blind source separation (BSS) approaches [2], [3] 
consider that each endmember is represented by the same 
spectrum in all image pixels. However, in order to describe 
other phenomena that occur in some practical applications 
[4], [5], more complex models are required, wherein each 
endmember is often represented by different, but close, 
spectra in all pixels of the considered image. In that case, 
the concept of endmembers is replaced by classes of 
endmembers. This phenomenon, which principally occurs 
due to varying illumination and atmospheric conditions or 
material composition [6], is known as spectral/intra-class 
variability. Not addressing this issue might bring in errors 
that spread throughout the analysis process of the considered 
remote sensing data. Therefore, very recently, in [4], [5], 
authors developed blind unmixing methods, based on 
nonnegative matrix factorization (NMF) [7], which address 
this spectral variability issue. These methods, called 
Unconstrained Pixel-by-pixel NMF (UP-NMF) and Inertia-
constrained Pixel-by-pixel NMF (IP-NMF), derive a 
different estimated spectrum in each pixel for each class of 
endmembers.        
In this article, a new linear mixing model, involving spectral 
variability modeled in a multiplicative form, is firstly 
introduced. Then, an algorithm, based on pixel-by-pixel 
NMF that consists in factorizing a nonnegative matrix into a 
product of other nonnegative matrices [7], is proposed for 
unmixing the considered data. This proposed algorithm 
minimizes a cost function, based on the introduced mixing 
model, by means of multiplicative update rules.    
The remainder of this paper is organized as follows. The 
introduced data mixing model is described in Section 2. The 
proposed algorithm is given in Section 3. In Section 4, the 
experiments, by means of synthetic data, are described. In 
that section, the results obtained with the proposed approach 
are compared with those provided by methods from the 
literature. Finally, a conclusion is given in Section 5. 
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2. PROPOSED DATA MIXING MODEL 
 
In this section, the proposed mathematical data mixing 
model is described. As mentioned above, most LSU 
approaches consider that each endmember is represented by 
the same spectrum in all image pixels. In that case, each 
observed nonnegative reflectance spectrum 𝑥௜  ∈  ℝା

௅×ଵ, 
associated with pixel i, is considered as 
 

𝑥௜ = ∑ 𝑟௝  𝑐௜௝  ெ
௝ୀଵ ,  i = 1…P,  (1) 

 
where 𝑟௝  ∈  ℝା

௅×ଵ corresponds to the nonnegative 
reflectance spectrum of the jth endmember. Each sample of 
this spectrum is lower than or equal to one. The coefficient 
cij is the nonnegative abundance fraction of the jth 
endmember in the considered pixel i. M and P respectively 
correspond to the number of endmembers and the number of 
image pixels. L is the number of spectral bands. The 
nonnegative abundance fractions cij also obey the well-
known abundance sum-to-one constraint [1]. 
 
In the present investigation, the spectral variability 
phenomenon is considered by introducing a new data 
mixing model. This one considers a different spectrum in 
each pixel for each endmember. Therefore, the model (1) 
becomes [5] 
 

𝑥௜ = ∑ 𝑟௜௝ 𝑐௜௝ ெ
௝ୀଵ ,  i = 1…P,  (2) 

        
where 𝑟௜௝  ∈  ℝା

௅×ଵ corresponds to the version associated 
with pixel i for the jth class of endmember nonnegative 
reflectance spectra. Each sample of this vector is also lower 
than or equal to one. To address the spectral variability 
phenomenon, the model of rij introduced in this paper is 
defined by 
 

𝑟௜௝ =  𝑎௜௝ ⨀ 𝑒ଵ௝ ,  (3) 
  
where the operator ⨀ denotes the element-wise 
multiplication,  𝑎௜௝  ∈  ℝା

௅×ଵ corresponds to the vector of 
nonnegative variability coefficients for the version of the jth 
class of endmembers associated with pixel i, and 𝑒ଵ௝  ∈

 ℝା
௅×ଵ is the nonnegative reflectance spectrum of this class 

of endmembers associated with the first pixel. In the 
proposed model, endmember spectra contained in the first 
pixel are considered as a reference for the considered 
spectral variability phenomenon. The scale coefficients in 
the vector aij allow tuning the spectra rij in all pixels with 
respect to the spectra e1j in the first pixel. These vectors aij 
are here constrained as 
 

0௅×ଵ  <  𝛼௅×ଵ  ≤ 𝑎௜௝  ≤  𝛽௅×ଵ,  (4) 
  
where 𝛼௅×ଵ and 𝛽௅×ଵ are fixed coefficient vectors 
controlling the minimum and the maximum variability 

degrees. Eq. (3) clearly shows that the spectral variability is 
modeled in a multiplicative form. The model (2) then 
becomes 
 

𝑥௜ = ∑ (𝑎௜௝ ⨀ 𝑒ଵ௝) 𝑐௜௝ ெ
௝ୀଵ ,  i = 1…P.  (5) 

 
This last data mixing model can be written more compactly, 
for all pixels, in matrix form 
 

𝑋 = (𝐴 ⨀ 𝐸) 𝐶,  (6) 
 
where 𝑋 ∈  ℝା

௅×௉ is the observed data matrix in which each 
row corresponds to one spectral band of the considered 
image, and each column corresponds to one observed pixel 

spectrum. The matrix 𝐴 ∈  ℝା
௅×(ெ௉) contains all nonnegative 

variability coefficients. This matrix can be written as 
 

𝛢 =  [𝐴ଵ|𝐴ଶ| ⋯ |𝐴௉],  
 

with 𝐴௧ ∈  ℝା
௅×ெ  (t = 1…P), 

(7) 

 
and 𝐴ଵ =  1௅×ெ.   

 
(8) 

 

The matrix 𝐸 ∈  ℝା
௅×(ெ௉) contains the M-endmember-

relative-spectra submatrix 𝐸ଵ ∈  ℝା
௅×ெ , associated with the 

first pixel, and replicated P times. Therefore, this matrix can 
be written as 
 

𝐸 =  [𝐸ଵ| 𝐸ଵ| ⋯ |𝐸ଵ]ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
௉

. (9) 

 

The matrix 𝐶 ∈  ℝା
(ெ௉)×௉ is block-diagonal and contains 

abundance fractions. This matrix corresponds to the 
transpose of that described in [5].  
 

3. PROPOSED UNMIXING ALGORITHM 
 
The proposed unmixing algorithm is a pixel-by-pixel NMF 
one. It aims at modeling the proposed data mixing function 
defined by (6). The involved variables are three matrices: 𝐴ሚ, 
𝐸෨  and 𝐶ሚ that respectively aim at estimating 𝛢, 𝐸 and 𝐶. The 
proposed method is inspired from the standard NMF 
methods, which use multiplicative update rules to achieve 
the unmixing process. The proposed algorithm consists in 
minimizing the following cost function: 
 

𝐽 =
ଵ

ଶ
ฮ𝑋 − ൫𝐴ሚ⨀𝐸෨൯ 𝐶ሚฮ

ி

ଶ
, (10) 

 
where ‖. ‖ி represents the Frobenius norm. 
 
This cost function is optimized with iterative gradient-based 
update rules. Therefore, and in order to simply allow 
obtaining the gradient expressions, the cost function J is 
expressed as 
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𝐽 =
ଵ

ଶ
 Tr ቀ𝑋𝑋୘ − 𝑋𝐶ሚ୘൫𝛢ሚ ⊙ 𝐸෨൯

୘
− ൫𝛢ሚ ⊙ 𝐸෨൯ 𝐶ሚ𝑋୘ +

+ ൫𝛢ሚ ⊙ 𝐸෨൯ 𝐶ሚ𝐶ሚ୘൫𝛢ሚ ⊙ 𝐸෨൯
୘

൯, 
(11) 

 
where Tr(.) and (.)T, respectively, represent the matrix trace 
and the matrix transpose. Using the properties provided in 
[8], the gradient expressions of the considered cost function 
are as follows (in matrix form), when disregarding the 
structure (9) of 𝐸෨at this stage (it is taken into account further 
in this paper: see the discussion after (24)) 
 

డ௃

பா෨
= − ൫𝑋𝐶ሚ୘ − (𝛢ሚ  ⊙ 𝐸෨)𝐶ሚ𝐶ሚ୘൯ ⊙ 𝛢ሚ, (12) 

  
ப௃

ப஺෨
= − ൫𝑋𝐶ሚ୘ − (𝛢ሚ ⊙ 𝐸෨)𝐶ሚ𝐶ሚ୘൯ ⊙ 𝐸෨ , (13) 

  
ப௃

ப஼ሚ
= − ൫𝛢ሚ ⊙ 𝐸෨൯

୘
൫𝑋 − (𝛢ሚ ⊙ 𝐸෨)𝐶ሚ൯. (14) 

 
Taking into account that the proposed algorithm is a 
gradient-based one, the following iterative update rule is 
used 
 

𝜃 ←  𝜃 − 𝜑ఏ ⊙
డ௃

డఏ
, (15) 

 
where 𝜃 corresponds to one of the three considered matrices 
𝐴ሚ or 𝐸෨  or 𝐶ሚ, and 𝜑ఏ is a learning rate in matrix form. This 
update rule is not sufficient since it does not ensure 
nonnegativity. In order to satisfy this constraint, an iterative 
and multiplicative rule is designed from the above one as 

follows. From (12)-(14), it is clear that the derivative 
డ௃

డఏ
 of J 

with respect to 𝜃 can be written as the difference of two 

nonnegative functions such that  
డ௃

డఏ
=

డ௃

డఏ

ା
−

డ௃

డఏ

ି
. In the 

gradient expressions (12)-(14), the nonnegative function 

 
డ௃

డఏ

ା
 corresponds to the terms preceded by a plus sign, while 

డ௃

డఏ

ି
corresponds to the terms preceded by a minus sign. The 

nonnegativity of 𝜃 throughout its adaptation can be satisfied 
by initializing 𝜃 with a nonnegative value and after that 
choosing the value of the learning rate matrix 𝜑ఏ according 
to 
 

𝜑ఏ = 𝜃 ⊘
డ௃

డఏ

ା
, (16) 

 
where the operator ⊘ denotes the element-wise division. 
Consequently, the update rule (15) becomes 
 

𝜃 ←  𝜃 ⊙  
డ௃

డఏ

ି
 ⊘ 

డ௃

డఏ

ା
. (17) 

   
The final proposed iterative and multiplicative update rules 
for the considered matrices read 
 

𝐸෨ ← 𝐸෨ ⊙ ൫𝑋𝐶ሚ୘൯ ⊘ ቀ൫𝛢ሚ ⊙ 𝐸෨൯𝐶ሚ𝐶ሚ୘ + 𝜀ቁ, (18) 

  

𝛢ሚ ← 𝛢ሚ ⊙ ൫𝑋𝐶ሚ୘൯ ⊘ ቀ൫𝛢ሚ ⊙ 𝐸෨൯𝐶ሚ𝐶ሚ୘ + 𝜀ቁ, (19) 

  

𝐶ሚ ← 𝐶ሚ ⊙ ቀ൫𝛢ሚ ⊙ 𝐸෨൯
୘

𝑋ቁ ⊘ ቀ൫𝛢ሚ ⊙ 𝐸෨൯
୘

൫𝛢ሚ ⊙  E෩൯𝐶ሚ + 𝜀ቁ, (20) 

 
where 𝜀 is a very small and positive value that is added to 
the denominator of each update rule to avoid division by 
zero. 
Also, since rij defined by (3) should be lower than or equal 
to one and due to (4), the following constraints are also 
considered 
 

𝛢ሚ ⊙ 𝐸෨ ≤ 1௅×(ெ௉), (21) 
  

𝛼௅×(ெ௉)  ≤ 𝐴ሚ  ≤  𝛽௅×(ெ௉). (22) 
 
Therefore, in the proposed algorithm the following 
constraints are also considered 
 

𝛢ሚ ← max {𝛢ሚ, 𝛼௅×(ெ௉)}, (23) 
  

𝛢ሚ ← min {𝛢ሚ, 𝛽௅×(ெ௉), 1௅×(ெ௉) ⊘ (𝐸෨ + 𝜀)}. (24) 
 
In addition, and as mentioned in (8) and (9), the following 
additional constraints are taken into account. Each element 
of the block matrix 𝛢ሚଵ, of the updated matrix 𝛢ሚ, is 
constrained to take the one value, and each of the P-1 last 
M-column submatrices of 𝐸෨  is constrained to be equal to its 
first updated submatrix 𝐸෨ଵ.  
Finally, the abundance sum-to-one constraint is fulfilled by 
using the technique described in [9].  
The designed algorithm, as standard NMF techniques, does 
not guarantee that it provides a unique solution and its 
convergence point depends on its initialization. To keep 
away from random initialization from the viewpoint of the 
designed algorithm, and as the initialization stage, each 
initial spectral variability coefficient is fixed to one. Also, 
the first block matrix 𝐸෨ଵ of 𝐸෨  is calculated by means of the 
vertex component analysis (VCA) method [1]. This first 
initial submatrix is replicated P-1 times to obtain the initial 
value of the matrix 𝐸෨ . Besides, each initial non-zero value of 
the matrix 𝐶ሚ  is set to 1/M. 
A predefined maximum number of iterations is used as the 
stopping criterion of the proposed algorithm. 
 

4. EXPERIMENTAL RESULTS 
 

Experiments, based on realistic synthetic data, are carried 
out to evaluate the performance of the proposed algorithm. 
The obtained results are also compared to those of three 
methods from the literature: standard (i.e. without taking 
into account the spectral variability phenomenon) VCA [1], 
UPNMF and IPNMF [4], [5] that consider this phenomenon. 
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4.1. Tested data 
 
Four sets of urban environment (photovoltaic panels, tiles, 
grass and trees) spectra with spectral variability, obtained by 
ground measurements, from 0.4 to 2.5 μm, using a 
spectrometer, with 214 wavelengths, are used to linearly 
create two 100-pixel realistic synthetic hyperspectral 
images. For each pixel of these two images, a spectrum, for 
each of the endmember classes, is randomly chosen and 
considered in the creation process. 
In the first generated image, only three endmember classes 
(photovoltaic panels, tiles and grass) are considered, while 
in the second generated image, all four endmember classes 
are considered. 
The abundance fractions used in the mixtures are created 
from a land cover classification, by averaging pixel 
classification values on a non-overlapping sliding window. 
 
4.2. Performance evaluation criteria 
 
The spectral angle mapper (SAM), the normalized mean 
square error (NMSE) and the spectral information 
divergence (SID) are used to evaluate the performance of 
the tested methods in terms of estimated spectra. A smaller 
value of these criteria indicates a better unmixing process. 
For the designed algorithm and the UPNMF and IPNMF 
approaches, these criteria are used as follows. Each actual 
spectrum for an endmember-class is compared with all 
estimated spectra (i.e. in each pixel) for the same 
endmember-class, and the minimum criterion value is 
retained. Then, the mean of these minima, over all 
endmember classes, is the final considered criterion value. 
For the VCA algorithm, for each endmember-class, the only 
estimated spectrum is compared with all actual spectra of 
the considered endmember-class, and the mean criterion 
value is retained. Then, the mean of these means, over all 
endmember classes, is the final considered criterion value.     
 
4.3. Results and discussion 
 
Hereafter, the mean results provided by the tested methods 
are given for the two ten-times generated images. 
All tested methods are initialized with the appropriate same 
matrix values. 
For the proposed algorithm, all coefficients of the matrix α 
(resp. β) defined in (4), which controls the minimum (resp. 
maximum) variability degree, are set to 0.5 (resp. 1.5).  
The maximum number of iterations used in each tested 
algorithm is set to 100.     
The next tables show the values of the considered 
performance criteria for the two generated images. 
 
 
 
 

Table I. Values of the considered performance criteria for 
the first generated image. 

 
 Proposed VCA UPMNF IPMNF 

SAM (°) 5.62 10.41 6.17 6.18 
NMSE (%) 16.55 30.29 19.15 19.24 
SID 1.78 3.27 2.18 2.20 

 
 
Table II. Values of the considered performance criteria for 

the second generated image. 
 

 Proposed VCA UPMNF IPMNF 
SAM (°) 4.53 10.93 6.42 6.44 
NMSE (%) 12.63 23.56 19.18 19.25 
SID 1.12 5.08 2.20 2.21 

 
Globally, the above tables prove that the proposed 
hyperspectral unmixing algorithm, with spectral variability, 
achieves much better performance than the tested methods 
from the literature. Indeed, from these tables, it is clear that 
the proposed method provides the best SAM, NMSE and 
SID criteria values. 
 

5. CONCLUSION 
 
In this paper, a new hyperspectral unmixing method, based 
on a new data mixing model, is designed. The proposed 
algorithm, which is based on nonnegative matrix 
factorization, considers the spectral variability phenomenon 
modeled in a multiplicative form. This designed algorithm 
uses iterative and multiplicative update rules. 
Compared with methods from the literature, and according 
to the obtained results, the proposed approach proves to be 
very attractive for unmixing hyperspectral remote sensing 
data with spectral variability. 
Future extensions of this work will especially consist in 
performing further tests by applying the proposed approach 
to real data, and finding a way to better constrain the 
spectral variability coefficients for better spectra estimation. 
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