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Abstract—Hyperspectral (HS) imaging systems are useful in a
diverse range of applications that involve detection and classifi-
cation tasks. However, the low spatial resolution of hyperspectral
images may limit the performance of the involved tasks in
such applications. In the last years, fusing the information of
a HS image with high spatial resolution multispectral (MS) or
panchromatic (PAN) images has been widely studied to enhance
the spatial resolution. Image fusion has been formulated as an
inverse problem whose solution is a HS image which assumed to
be sparse in an analytic or learned dictionary. This work proposes
a non-local centralized sparse representation model on a set of
learned dictionaries in order to regularize the conventional fusion
problem. The dictionaries are learned from the observed data
taking advantage of the high spectral correlation within the HS
image and the non-local self-similarity over the spatial domain
of the MS image. Then, conditionally on these dictionaries, the
fusion problem is solved by an alternating iterative numerical
algorithm. Experimental results with real data show that the
proposed method outperforms the state-of-the-art methods under
different quantitative assessments.

I. INTRODUCTION

Hyperspectral (HS) imaging consists of acquiring a scene
in several hundreds of contiguous spectral bands, each one
captured at a specific wavelength. HS images are characterized
by a high spectral resolution which allows accurate identi-
fication of the different materials contained in the scene of
interest. Analyzing the spectral information of HS images has
allowed the development of many applications in the fields
of remote sensing [1], medical imaging [2] or astronomy [3].
However, due to technological reasons, HS images are limited
by their relatively low spatial resolution [4]. For instance, the
Hyperion imaging spectrometer has about 220 spectral bands,
which extend from the visible region (0.4 to 0.7 µm) through
the SWIR (about 2.5 µm), with a spatial resolution of 30
m by pixel [5] that can be insufficient for some practical
applications.

To overcome the spatial resolution limitation, a common
trend is to fuse images with different spectral and spatial
resolutions. A typical example studied in this work is the
fusion of HS images (having high spectral resolution) with
multispectral (MS) images (having high spatial resolution) [6],
[7]. Another example is HS pansharpening, which addresses
the fusion of panchromatic and HS images [8].

This work was supported by UIS-ECOPETROL through the grant titled
”Acuerdo de Cooperacin No. 27 derivado del CONVENIO MARCO No.
5222395”.

Due to the ill-posed nature of the inverse problem behind
the image fusion problem, it is important to find an appropriate
model taking into account the prior knowledge of natural
images. Effective regularizers that restrict the solution spaces
have been widely used in image restoration (IR) problems
obtaining promising results [9], [10], [11], [12]. In particular,
total-variation-based modeling showed good performance for
the image fusion problem under a super-resolution approach
[7]. In addition, sparsity-based modeling has been proven to
be an effective regularization method in IR problems such
as image super-resolution, image denoising, image deblurring
and image fusion [13], [9], [14], [6]. More formally, a sparse
representation model implies that a signal x ∈ RNp can be
represented as a linear combination of few atoms from a
dictionary Φ via x = Φαx. If the signals of interest are two
dimensional images, a common approach is to represent image
patches with an over-complete dictionary learned from the
data achieving better representations of the image structures
compared to analytically designed dictionaries such as wavelet
transforms [15].

On the other hand, the IR problem of estimating x from
an observed degraded image y = Hx + n using sparsity
constraints over x is a challenging problem due to the
degradation process. The estimated sparse code αy using
traditional algorithms such as basis pursuit, Lasso, iterative
shrinkage/thresholding, and Bayesian frameworks [16], [17],
[18], [19], [20] may not be so close to the sparse code αx of
the original image. Therefore, the reconstruction x̂ = Φαy
may not lead to an accurate estimation [21], [22]. As an
alternative, properties of non-local redundancies existing in
natural images are exploited to improve the accuracy of the
sparse model. For instance, different approaches have been
proposed for combining learned dictionaries with the non-local
self similarities of natural images leading to state-of-the-art
algorithms in tasks such as denoising or superresolution [21],
[23], [24], [25]. In the same direction, a non-locally centralized
sparse representation (NCSR) model has been proposed in
[22] to further improve the sparse representation-based image
restoration methods. In detail, the model aims to improve
the quality of the reconstructed image x̂ by centralizing the
estimated sparse code αy to a close estimation of αx reducing
the error να = αy − αx referred to as sparse coding noise
(SCN). In practice, a good estimate of αx is obtained by
exploiting a large amount of non-local redundancies present
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in the image x.
This work proposes a hyperspectral and multispectral image

fusion method using a NCSR model of the high-resolution
(HR) HS image in a set of learned dictionaries. Specifically,
the non-local self-similarities of natural images are exploited
by forming groups of similar cubic patches of the HR HS
image. Then, each cluster is sparsely represented on a unique
adaptive spatial-spectral dictionary whose sparse codes αy
are centralized to a closer estimation of the sparse code αx.
This estimation is obtained by also exploiting the non-local
redundancy of natural images. The dictionaries for each cluster
are built from the data taking advantage of the high spatial
resolution of the MS image and the high spectral correlation of
the HS image. The resulting image fusion problem is solved by
an alternating and iterative shrinkage algorithm which allows
to divide the problem in two parts, a quadratic problem and a
shrinkage operator. Experimental results with real data show
that the proposed method achieves and outperforms the state-
of-the-art performance by exhibiting a gain of up to 1[dB] in
terms of peak signal-to-noise ratio (PSNR).

II. PROBLEM STATEMENT

It is very common to assume that HS and MS images
result from the application of linear spatial and linear spectral
degradation to a higher resolution image which is represented
by the vector x ∈ RNp with Np = NML [26], [27], [7]. The
observed HS image represented by the vector yH ∈ RNHMHL

is supposed to be a blurred and downsampled version of the
target full-resolution image x. On the other hand, the MS
image yM ∈ RNMLM is a spectrally degraded version of the
target image [6]. Thus, the resulting acquisition models for the
HS and MS images can be written in vector form as

yH = PBx + nH

yM = Rx + nM ,
(1)

where P ∈ RNHMHL×Np is the downsampling matrix, B ∈
RNp×Np is the blurring matrix acting as a cyclic convolution
operator, R ∈ RNMLM×Np is the spectral response of the MS
sensor, and the pair of vectors nH ∈ RNHMHL and nM ∈
RNMLM are additive noise terms for the HS and MS images,
respectively. Note that any spatial-spectral dimensional source
X ∈ RN×M×L (N × M is used for the spatial dimensions
and L is the spectral dimension) is represented by the vector
x = [x̄T1 , ..., x̄

T
L]
T ∈ RNML, where x̄i ∈ RNM contains all

the image intensities associated with the i-th spectral band.
Thus, taking the observation models in (1) into account, the
image restoration problem considered in this paper consists
of estimating the high-resolution (HR) image x from the
observed measurements yH and yM . This problem is strongly
ill-posed and we propose to consider a non-local centralized
sparse model in order to regularize its solution.

III. HYPERSPECTRAL AND MULTISPECTRAL IMAGE
FUSION BASED ON A NCSR MODEL

First of all, consider that the target high-resolution HS
image x is divided into overlapping image cubic patches. This

decomposition has been shown to be very effective in many
image processing applications [28]. Let xi = Wix ∈ RS2L

be the vector representation of a cubic image patch of size
S × S × L where the linear index i represents the location
of the central pixel of the patch, and Wi ∈ RS2L×Np is the
matrix extracting cubic patch xi at location i. Furthermore,
consider that each cubic patch can be sparsely represented in
a given dictionary, i.e. xi = Φαx,i, where αx,i is a sparse
vector. The reconstruction of x from the set of sparse codes
{αx,i} can be calculated by averaging all overlapping patches
leading to

x̂ =

(∑
i

WT
i Wi

)−1∑
i

(
WT

i Φαx,i
)
. (2)

For notation convenience we denote the estimation x̂ in (2) as
x̂ := Φ ◦αx where αx denotes the concatenation of all αx,i.

A. Non-local Sparse Representation based Model

Several sparsity-based regularization approaches have been
employed in different IR problems to manage its ill-posed
nature [13], [6], [14], [29]. However, due to the degradation
process of the observed images, the estimated sparse code
αy deviates from the sparse code αx of the original image
compromising the quality of the recovered image x̂. An
effective strategy to further improve the sparsity results has
been to employ prior knowledge from the non-local similarities
of the underlying image [21], [22]. Therefore, it makes sense
that a non-local alternative regularization benefits the image
fusion problem. Specifically, this work proposes a NCSR [22]
of the underlying HR image to regularize the image fusion
problem. Based on the NCSR model and the observation
models in (1) we consider the following optimization problem

α̂y = argmin
α

1

2
‖yH −PB (Φ ◦α) ‖22

+
1

2
‖yM −R (Φ ◦α) ‖22 + λ

∑
i

‖αi − βi‖1,
(3)

where the first two terms denote the data fidelity with respect
to the HS and MS images, the last term is associated to the
NCSR sparsity constraint, βi is some good estimation of αx,i
and λ is a regularization parameter. The problem in (3) induces
sparsity on αi and at same time centralizes it to the estimation
βi suppressing the SCN αy − αx [22]. Based on the non-
local redundancies of natural images, the estimation βi of αx,i
using an iterative optimization algorithm can be calculated as
a weighted average of some sparse codes αy,p such that p ∈
Ωi, Ωi ⊆ {1, 2, ...}. In detail, the sparse codes αy,p are the
sparse representation of similar patches to x̂i extracted from
the image x̂ in the current iteration. Thus βi can be calculated
as

βi =
∑
p∈Ωi

ωpαy,p,

ωp =
1

ϕ
exp

(
−‖x̂i − x̂p‖22

h

) (4)
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where ωp is the associated weight, h is a predefined scalar
and ϕ is a normalization factor. Note that the indexes i and
p ∈ Ωi are employed to differentiate the current patch and its
similar neighboring patches, respectively.

B. Dictionary learning

Studies about the human visual system suggest that natu-
ral images can be sparsely represented in some appropriate
domain [30]. Sparsifying domains have been described by
analytic and learned dictionaries which contain basis functions
that represent structural primitives of conventional image. Let
each cubic patch xi be represented as a matrix Xi ∈ RS2×L

where the rows contain all the spectral pixels of the cubic
patch. Then, the patch Xi can be represented by a small
number of atoms as follows [23]

Xi =
∑
m

αmΦm (5)

where {Φm} is the set of dictionary elements (matrix atoms)
and αm are the respective scalar coefficients with m� S2L.

One important issue of sparsity-based methods is the selec-
tion of the dictionary elements Φm. In this work, we propose
to consider spatial-spectral dictionary elements that are con-
structed using separable spatial and spectral components [31],
that is

Φm = vdu
T
r (6)

where {vd}S
2

d=1 and {ur}Lr=1 are orthonormal basis spanning
the spatial and spectral spaces, respectively. The main moti-
vation to do that is to exploit the complementary information
of the HS and MS images. More precisely, the base for the
spectral domain U is extracted from the high-resolution HS
image, and the base for the spatial domain V from the high
spatial resolution MS image allowing to synthesize dictionary
elements in (6) with simultaneously high spectral and high
spatial resolutions. In the spectral domain, the HS image yH
is reorganized as a L×NHMH matrix to learn via PCA the
spectral basis U = [u1,u2, ...,uL]. Likewise, the spatial basis
V = [v1,v2, ...,vS2 ] is trained using PCA from information
extracted along all bands of the MS image yM .

In the spatial domain, instead of learning a single dictionary
for all image patches, an alternative approach is to cluster
the training patches and learn a dictionary for each cluster.
This strategy has been shown to be a flexible solution leading
to sparse representations on any spatial patch [32], [22].
Therefore, we cluster by similarity spatial patches of yM
pooled along all the bands using the K-means algorithm. This
process consists in collecting spatial patches in clusters Ck,
with k = 1, 2, ...,K, by their high frequency patterns since
clustering by intensity has presented discrimination problems
[32], [23]. The high frequency patterns ỹM of yM can be
calculated as

ỹM = yM −GyM , (7)

where G represents a blurring operator. Here, it is important
to note that each cluster Ck has a corresponding spatial
basis Vk =

[
v
(k)
1 ,v

(k)
2 , ...,v

(k)
S2

]
obtained directly from the

information of yM and the image ỹM is only employed
for the clustering process. Combining the PCA spectral and
spatial basis following (6), the spatial-spectral dictionary for
any patch xi in cluster Ck can be expressed as

Φ̄k = Vk ⊗U, (8)

where Φ̄k =
[
φ

(k)
1 ,φ

(k)
2 , ...,φ

(k)
S2L

]
and ⊗ denotes the Kro-

necker operator. It is worth noting that each cubic patch xi
needs to be represented in a single spatial-spectral dictionary
Φ̄k.

IV. NCSR-BASED FUSION ALGORITHM

The HS and MS image fusion problem based on a NCSR
model in (3) is solved by an iterative shrinkage algorithm [22]
described in Algorithm 1. Two main loops are implemented
to perform the necessary updates. The outer loop indexed by t
iteratively updates the spatial-spectral dictionary Φ̄k. Then,
for fixed Φ̄k and β the inner loop indexed by q finds an
estimation x̂ by using an alternating two-step procedure. First,
the solution of the quadratic problem related to the image
fidelity is solved by a gradient descent algorithm. Second, a
shrinkage operator [33], [22] is used to estimate the non-local
centralized sparse codes α̂y . Thus, in the (q + 1)-th iteration,
α̂y is computed as

α̂
(q+1)
y,i = Hτ

(
α̂

(q)
y,i − βi

)
+ βi (9)

where Hτ (·) is the soft-thresholding operator with a threshold
τ .

Algorithm 1 NCSR-Based HS and MS Image Fusion
Input : yH and yM

Output : High-resolution HS image x̂
Initialization: x̂ = bicubic(yH), x

(0)
M = yM , x

(0)
H = yH

1: for t = 1, 2, ..., T do
2: Update spatial dictionaries V

(t)
k via K-means and PCA

from x
(t)
M

3: Update spectral dictionary U(t) via PCA from x
(t)
H

4: Update adaptive spatial-spectral dictionary Φ̄
(t)
k via (8)

5: for q = 1, 2, ..., Q do
6: x̂(q+1/2) = x̂(q) + δBT

(
yH − Bx̂(q)

)
+

δRT
(
yM − Rx̂(q)

)
where δ is a predefined constant

7: α̂
(q)
y =

[
Φ̄

(t)
k,1W1x̂

(q+1/2), ..., Φ̄
(t)
k,npatWnpatx̂

(q+1/2)
]

where Φ̄
(t)
k,m is the dictionary associated to the patch

Wmx̂q+1/2 and npat denote the number of patches
extracted from image

8: Compute α̂
(q+1)
y,i using (9)

9: if mod (q, J) then
10: Update βi using (4)
11: end if
12: Update image: x̂(q+1) = Φ̄k ◦α(q+1)

y using (2)
13: end for
14: Update HS and MS images from x̂(t) = x̂(q+1):

x
(t+1)
H = PBx̂(t), x

(t+1)
M = Rx̂(t)

15: end for
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V. EXPERIMENTAL RESULTS

This section studies the performance of the proposed image
fusion method for two different data sets with available ground
truth. We conduct experiments on the images: Pavia data
set with dimensions 128 × 128 × 93 1and the Moffett data
set with dimensions 128 × 128 × 103. Each target image
was degraded to generate the HS and MS images. The HS
image is estimated from the target image by applying a 5× 5
Gaussian spatial filter on each image band followed by a
downsampling bidirectional with a scale factor of d = 4.
The high spatial and low spectral resolution MS image with
LM = 4 was generated for both data set by a filtering using
the LANDSAT-like spectral responses as in [6]. Additionally,
the HS and MS images are contaminated with zero-mean
additive Gaussian noises. The last 50 bands of both data set
are perturbed by a SNR= 30[dB] and the bands remaining
by a SNR= 35[dB]. The basic parameters were established
as follows: patch size = 6 × 6, number of clusters K = 60,
number of neighboring cubic patches to estimate βi (i.e., |Ωi|)
is equal to 12, search area size of similar patches 50 × 50,
thresholding parameter τ = 1.841 and parameter δ initially
set in 1.25 and then adaptively adjusted by reducing its value
along the iterations.The proposed method is compared against
two fusion approaches presented in [6] and [7] referred to as
(HMIF-SR) and (HySure), respectively.

The HS and MS distorted images and the fusion results
for the Pavia and Moffett data set are shown in Figs. 1 and
2 respectively. The reconstructed images using the proposed
fusion strategy are visually very close to the original image.
Furthermore, the qualitative comparison between the evaluated
fusion methods shows a better quality for fused images from
the proposed method. Note that, the fused images from adver-
sary methods exhibit further spatial degradation of the original
image for both Pavia data set and Moffett data set.

Fig. 1. Fusion results (Pavia data set). (Top 1) HS Pavia image. (Top 2) MS
Pavia image. (Top 3) Original Pavia image. (Bottom 1) HySure. (Bottom 2)
HMIF-SR. (Bottom 3) Proposed method.

Quantitative results reported in Table I and II show a gain
in favor of the proposed method in therms of the RMSE
(Root-Mean-Square error), UIQI (Universal Image Quality
Index), SAM (Spectral Angle Mapper), ERGAS (Relative

Fig. 2. Fusion results (Moffett data set). (Top 1) HS Moffett image. (Top
2) MS Moffett image. (Top 3) Original Moffett image. (Bottom 1) HySure.
(Bottom 2) HMIF-SR. (Bottom 3) Proposed method.

Dimensionless Global Error in Synthesis), PSNR (Peak Signal-
to-Noise Ratio) and DD (Degree of Distortion) image fusion
metrics (see [6] for more details).

TABLE I
PERFORMANCE OF THE HYSURE [7], HMIF-SR [6] AND PROPOSED HS

AND MS IMAGE FUSION METHODS ON THE PAVIA DATA SET:
RMSE(10−2), UIQI, SAM [DEGREES], ERGAS, PSNR [dB] , DD

(10−3)

Methods RMSE UIQI SAM ERGAS PSNR DD
HySure 1.511 0.978 2.682 1.313 36.214 11.131

HMIF-SR 0.947 0.991 1.495 0.847 39.684 7.011
Proposed 0.863 0.992 1.345 0.764 40.632 6.105

TABLE II
PERFORMANCE OF THE HYSURE [7], HMIF-SR [6] AND PROPOSED HS

AND MS IMAGE FUSION METHODS ON THE MOFFETT DATA SET:
RMSE(10−2), UIQI, SAM [DEGREES], ERGAS, PSNR [dB] , DD

(10−3)

Methods RMSE UIQI SAM ERGAS PSNR DD
HySure 1.246 0.987 3.232 1.486 37.994 9.082

HMIF-SR 0.867 0.993 2.103 1.037 40.578 6.429
Proposed 0.852 0.994 1.948 0.994 41.4 6.191

To better evidence the difference between the fusion results,
four spectral signatures depicted in Fig. 3 on the Pavia
and Moffett dat set were extracted and compared with the
results obtained by the HySure, HMIF-SR and the proposed
method. For all cases, the resultant spectral signatures using
the proposed method were closer to the ground truth which
indicates a better estimation of the spectral distribution of
the image when compared with the HySure and HMIF-SR
methods.

VI. CONCLUSION

In this work, we propose an HS and MS image fusion
method based on a non-local centralized sparse representation.
This model allows us to include the non-local redundancy of
natural images in the HS image fusion problem and improve
the performance of the sparsity-based fusion approaches. Fur-
thermore, an adaptive spatial-spectral dictionary is constructed
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(a) (b)

(c) (d)

Fig. 3. Spectral responses : (a) spectral signature (15, 20), (b) spectral
signature (120, 105) on the Pavia data set. (c) spectral signature (14, 110),
(d) spectral signature (25, 72) on the Moffett data set.

exploiting the complementary information in the HS and MS
images. This dictionary is composed of K sub-dictionaries
associated to spatial clusters of the HS image and thus each
cubic patch of the image is sparsely represented in a compact
way by choosing the appropriate dictionary. An alternating
numerical algorithm was implemented by including two steps,
a shrinkage operator to solve the `1 regularization and a
gradient descent algorithm to solve the quadratic problem and
preserve the fidelity of the data. Experimental results show that
the proposed image fusion model outperforms state-of-the-art
sparsity-based methods in terms of the RMSE, UIQI, SAM,
ERGAS, PSNR, DD metrics for image fusion.
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