
Black-Box Decision based Adversarial Attack with
Symmetric α-stable Distribution

Vignesh Srinivasan
Machine Learning Group

Fraunhofer Heinrich Hertz Institute
Berlin, Germany

vignesh.srinivasan@hhi.fraunhofer.de

Ercan E. Kuruoglu
Institute of Information Science and Technologies

Italian National Research Council (CNR)
Pisa, Italy

ercan.kuruoglu@isti.cnr.it

Klaus-Robert Müller
Machine Learning Group

Technische Universität Berlin
Berlin, Germany

klaus-robert.mueller@tu-berlin.de

Wojciech Samek
Machine Learning Group

Fraunhofer Heinrich Hertz Institute
Berlin, Germany

wojciech.samek@hhi.fraunhofer.de

Shinichi Nakajima
Machine Learning Group

Technische Universität Berlin
Berlin, Germany

nakajima@tu-berlin.de

Abstract—Developing techniques for adversarial attack and
defense is an important research field for establishing reliable
machine learning and its applications. Many existing methods
employ Gaussian random variables for exploring the data space
to find the most adversarial (for attacking) or least adversarial
(for defense) point. However, the Gaussian distribution is not
necessarily the optimal choice when the exploration is required
to follow the complicated structure that most real-world data
distributions exhibit. In this paper, we investigate how statistics
of random variables affect such random walk exploration. Specif-
ically, we generalize the Boundary Attack, a state-of-the-art black-
box decision based attacking strategy, and propose the Lévy-
Attack, where the random walk is driven by symmetric α-stable
random variables. Our experiments on MNIST and CIFAR10
datasets show that the Lévy-Attack explores the image data space
more efficiently, and significantly improves the performance. Our
results also give an insight into the recently found fact in the
whitebox attacking scenario that the choice of the norm for
measuring the amplitude of the adversarial patterns is essential.

Index Terms—adversarial attack, α-stable distribution, deep
neural networks, image classification.

I. INTRODUCTION

The success of deep neural networks (DNNs) [1]–[5] has led
to them being used in many real world applications. However,
these models are also known to be susceptible to adversarial
attacks, i.e., minimal patterns crafted by attackers who try to
fool learning machines [6]–[11]. Such adversarial patterns do
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not affect human perception much, while they can manipulate
learning machines, e.g., to give wrong classification outputs.
DNN’s complex interactions between different layers enable
high accuracy under the controlled setting, while they make
the outputs unpredictable in untrained spots where training
samples exist sparsely. If attackers can find such a spot close
to a normal data sample, they can manipulate DNNs by
adding a very small (optimally invisible in computer vision
applications) perturbation to the original sample, leading to
fatal errors, e.g., manipulating an autonomous driving system
can cause serious accidents.

Two attacking scenarios are considered in general—
whitebox and blackbox. The whitebox scenario assumes that
the attacker has access to the complete target system, including
the architecture and the weights of the DNN, as well as the
defense strategy if the system is equipped with any. Typical
whitebox attacks optimize the classification output with re-
spect to the input by backpropagating through the defended
classifier [12]–[15]. On the other hand, the blackbox scenario
assumes that the attacker has only access to the output. Under
this scenario, the attacker has to rely on blackbox optimization,
where the objective can be computed for arbitrary inputs, but
the gradient information is not directly accessible. Although
the whitebox attack is more powerful, it is much less likely
that attackers can get full knowledge of the target system in
reality. Accordingly, the blackbox scenario is considered to be
a more realistic threat.

Existing blackbox attacks can be classified into two types—
the transfer attack and the decision based attack. In the transfer
attack, the attacker trains a student network which mimics the
output of the target classifier. The trained student network is
then used to get the gradient information for optimizing the
adversarial input. In the decision based attack, the attacker
simply performs random walk exploration. In the boundary
attack [16], a state-of-the-art method in this category, the
attacker first generates an initial adversarial sample from a
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given original sample by drawing a uniformly distributed
random pattern multiple times until it happens to lead to mis-
classification. Initial patterns generated in this way typically
have too large amplitudes to be hidden from human perception.
The attacker therefore polishes the initial adversarial pattern
by Gaussian random walk in order to minimize the amplitude,
keeping the classification output constant.1

Here our question arises. Is the Gaussian appropriate to
drive the adversarial pattern to minimize the amplitude? It
could be a reasonable choice if we only consider that the
attacker minimizes the L2 norm of the adversarial pattern.
However, it is also required to keep the classification output
constant through the whole random walk sequence. Provided
that the decision boundary of the classifier has complicated
structure, reflecting the real-world data distribution, we expect
that more efficient random walk can exist.

In this paper, we pursue this possibility, and investigate
how statistics of random variables affect the performance of
attacking strategies. To this end, we generalize the boundary
attack, and propose the Lévy-Attack where the random walk
exploration is driven by symmetric α-stable random variables.
We expect that the impulsive characteristic of the α-stable
distribution induces sparsity in random walk steps, which
would drive adversarial patterns along the complicated deci-
sion boundary structure efficiently. Naturally, our expectation
is reasonable only if the decision boundary has some structure
aligned to the coordinate system defined in the data space, so
that moving along the canonical direction keep more likely the
classification output than moving isotropic directions.

In our experiments on MNIST and CIFAR10 datasets,
Lévy-Attack with α ∼ 1.0 or less shows significantly better
performance than the original boundary attack with Gaussian
random walk. This implies that our hypothesis on the decision
boundary holds at least in those two popular image benchmark
datasets. Our results also give an insight into the recently found
fact in the whitebox attacking scenario that the choice of the
norm for measuring the amplitude of the adversarial patterns
is essential.

II. PROPOSED METHOD

In this section, we first introduce the α-stable distribution,
and propose the Lévy-Attack as a generalization of the bound-
ary attack.

A. Symmetric α-stable Distribution

The symmetric α-stable distribution is a generalization of
the Gaussian distribution which can model characteristics too
impulsive for the Gaussian model. This family of distributions
is most conveniently defined by their characteristic functions
[17] due to the lack of an analytical expression for the
probability density function. The characteristic function is
given as

φ(s) = exp[iµs− |γs|α], (1)

1In the case of the untargeted attack, the classification output is kept wrong,
i.e., random walk can go through the areas of any label except the true one.

Algorithm 1 (Untargeted) Lévy-Attack
Input: Classifier f(·), original image x and label y
Max. number T of iterations, termination threshold ψ
Output: Adversarial sample x−

1: repeat
2: x−0 ← x+∆ for ∆ ∼ UD(0, 255)
3: until y 6= f(x−0 )
4: for t = 0 to T − 1 do
5: (x−t+1, ε)← α-stable random update(x−t )
6: if y = f(x−0 ) then
7: x−t+1 ← x−t
8: end if
9: if ε < ψ then

break
10: end if
11: end for

where α ∈ (0, 2], µ ∈ (−∞,∞), and γ ∈ (0,∞) are
parameters. We denote the D-dimensional symmetric α-stable
distribution by SAD(α, µ, γ). α is the characteristic exponent
expressing the degree of impulsiveness of the distribution—
the smaller α is, the more impulsive the distribution is.
The symmetric α-stable distribution reduces to the Gaussian
distribution for α = 2, and to the Cauchy distribution for
α = 1, respectively. µ is the location parameter, which
corresponds to the mean in the Gaussian case, while γ is the
scale parameter measuring of the spread of the samples around
the mean, which corresponds to the variance in the Gaussian
case. For more details on α-stable distributions, readers are
referred to [17].

B. Lévy-Attack

Now, we propose our Lévy-Attack as a generalization of
the boundary attack [16], a simple yet effective attack under
the blackbox scenario, where the attacker has access only to
the classification output. We denote the classifier output by
y = f(x), where x is a data point, and f is the target
(blackbox) classifier. The Lévy-Attack performs the procedure
as described in Algorithm 1, which reduces to the original
boundary attack if we set α = 2.

While the attack is very simple, it can be a very effective
blackbox attack [16]. Naturally, the success of the Lévy-Attack
relies on the effectiveness of the proposal distribution. In
the proposal distribution we accommodate sampling from a
symmetric α-stable distribution ηt ∼ SAD(α, 0, 1). ‖ηt‖2 =
δ · d(x−t ,x), where d(x−t ,x) = ‖x−t+1 − x‖22 and δ is the
relative size of the perturbation. An orthogonal step is taken,
where ηt is projected onto a sphere around the original image
such that d(x−t ,x) = d(x−t+1,x). Finally, a step is taken
towards the original image so that the adversarial perturbation
is reduced by a small amount ε, d(x−t ,x) − d(x−t+1,x) =
ε · d(x−t ,x).
δ and ε are the two hyper-parameters which are dynamically

tuned to adjust to the local geometry of the decision boundary.
The orthogonal step in the proposal distribution encourages

2019 27th European Signal Processing Conference (EUSIPCO)



TABLE I
THE MEAN Sm AND THE MEDIAN Sd OF THE L∞ , L1 , AND L2 NORMS OF

THE ADVERSARIAL PATTERNS GENERATED BY LÉVY-ATTACK FOR THE
MNIST DATASET.

Attack L∞ L1 L2

Sm Sd Sm Sd Sm Sd

Gaussian 0.56 0.56 11.36 10.73 1.38 1.39
α = 1.5 0.57 0.58 9.62 9.16 1.31 1.31
α = 1.0 0.57 0.58 8.89 8.54 1.29 1.30
α = 0.5 0.58 0.58 8.84 8.71 1.30 1.32

Fig. 1. Adversarial samples generated by Lévy-Attack on MNIST dataset
for ”7” and ”9”. ”Gaussian” corresponds to α = 2, with which Lévy-Attack
reduces to the original boundary attack [16]. The classification output is shown
at the top right corner of each image. In each block (for ”7” as well as ”9”),
the top row displays adversarial samples generated with different α, while the
bottom row displays the corresponding adversarial patterns (the differences
from the original image).

around 50% orthogonal perturbations to be adversarial. The
length of the step, ε is adjusted according to the success rate
of the step. If the success rate is too high, then ε is increased
and vice versa. As the random walk moves closer towards the
original image, the success rate of the attack becomes lesser.
The attack gives up further exploration as ε converges to 0.

III. EXPERIMENT

We report on experiments performed using our Lévy-Attack
on the following datasets:

• MNIST: The MNIST dataset consists of 60, 000 images in
total, with 50, 000 images for training and 10, 000 images
for testing. It has 10 different classes each corresponding
to the 10 numerical digits. The image size is 28× 28.

• CIFAR10: This dataset also contains 50, 000 training im-
ages and 10, 000 test images. The images are of resolution
32× 32× 3 with 10 different classes in total.

TABLE II
THE MEAN Sm AND THE MEDIAN Sd OF THE L∞ , L1 , AND L2 NORMS OF

THE ADVERSARIAL PATTERNS GENERATED BY LÉVY-ATTACK FOR THE
CIFAR10 DATASET.

Attack L∞ L1 L2

Sm Sd Sm Sd Sm Sd

Gaussian 2.92 2.47 895.22 755.06 23.72 20.45
α = 1.5 2.99 2.44 859.49 708.54 23.15 19.49
α = 1.0 2.97 2.427 847.20 700.42 23.06 19.39
α = 0.5 2.94 2.421 826.29 685.76 22.78 19.28

TABLE III
THE AVERAGE NUMBER OF ITERATIONS THAT LÉVY-ATTACK PERFORMED

TO GENERATE ADVERSARIAL SAMPLES.

Attack MNIST CIFAR10
Gaussian 2700.22 4996.49
α = 1.5 2629.04 4995.96
α = 1.0 2792.52 4987.04
α = 0.5 3407.54 4997.37

In the MNIST experiment, we target the state-of-the-art
robust classifier proposed by Madry et al. [18],2 where the
classifier is trained, in addition to the original training set, on
the adversarial samples generated by the Projected Gradient
Descent (PGD) attack of bounded L∞ distortion by 0.3.
The classification accuracy on the original test samples is
98.68%. In the CIFAR10 experiment, we trained a state-of-
the-art Resnet model [5]. The classification accuracy on the
original test samples is 92.93%.

To generate samples by Lévy-Attack, we modify the code-
provided by [16] for the boundary attack, so that the random
walk is performed by the symmetric α-stable distribution,
instead of the Gaussian distribution. We evaluated adversarial
samples for α = 2.0, 1.5, 1.0, and 0.5. The other parameters
specifying the α-stable distribution is set to δ = 0.0 and
γ = 1.0. We limit the number of random walk steps to 5, 000.
Having such an upper-bound is reasonable because it is not
realistic to assume that the attacker may access to the classifier
output unlimited times.

For both datasets, we randomly sample N = 1, 000 images
from the test set, and evaluate the quality of the adversarial
patterns. As evaluation scores, we use the mean and the median
of 3 different Lp-norms for p = ∞, 1, and 2, over the 1,000
samples:

Sm =
1

N

N∑
i=1

(‖τ i‖p), Sd = medianNi=1(‖τ i‖p),

where {τ i} are the adversarial patterns. Smaller norms indi-
cate that the adversarial pattern is less visible, and therefore a
better attack.

Table I shows the results on the MNIST dataset, where we
see that the Lévy-Attack with α smaller than 2 (Gaussian)
gives significantly smaller L1 and L2 norms with the L∞
norm almost unchanged. Similar results are obtained on the

2https://github.com/MadryLab/mnist challenge

2019 27th European Signal Processing Conference (EUSIPCO)



Fig. 2. Adversarial samples generated by Lévy-Attack on CIFAR10 dataset
for ”cat” and ”deer”.

CIFAR10 dataset (Table II), where α < 2 gives better L1 and
L2 norms with the L∞ norm almost unchanged, although the
performance difference is smaller than the MNIST results.

Table III summarizes the average number of iterations the
Lévy-Attack performs. We see the tendency that smaller α
leads to more iterations, which implies that α-stable random
walk continues exploring when Gaussian random walk has
already been terminated due to a low success rate in further
adversarial exploration. Also, Tables I and II show that the
Lévy-Attack for α < 2 reaches to the point closer to the
original than the Gaussian (α = 2) random walk. These results
imply that the impulsive random walk is suitable to explore the
data space without crossing decision boundaries, and indirectly
support our hypothesis in Section I—decision boundaries have
some structure aligned to the coordinate system.

Figs. 1 and 2 show a few illustrative examples of adversarial
samples and adversarial patterns generated by Lévy-Attack.
For each block for the examples (”7” and ”9” in MINST,
and ”cat” and ”deer” in CIFAR10), the top row shows the
generated adversarial samples, while the bottom row shows
the corresponding adversarial patterns (the differences from
the original image). In the ”7” example of MNIST (Fig. 1),
Lévy-Attack with α ≥ 1.0 consistently tries to modify the
sample close to ”2”, while Lévy-Attack for α = 0.5 tries to
modify the sample close to ”7”. Apparently, the latter is more
efficient, i.e., it requires fewer pixels to make ”7” to ”9” than
to make ”7” to ”2”. The same applies to the ”9” example—it
seems more efficient to make ”9” close to ”7” than to make
”9” to ”0” or ”3”. However, only Lévy-Attack with a very
small α can find those efficient solution, because it is little

likely to get a sparse random walk step if it is driven by non-
sparse distributions like Gaussian. The CIFAR10 examples,
although less obvious than the MNIST examples, also show
similar tendency—the α-stable random walk with smaller α
provides sparser adversarial patterns.

IV. DISCUSSION

Many defense strategies have been proposed to counter
adversarial attacks [18]–[20]. However, it happened many
times that a new defense strategy is broken down by a newer
attacking strategy only a few months after its proposal. Thus,
the adversarial defense problem has not been solved even on
the toy MNIST data set, although defense is considered much
harder for larger data sets.

One recent finding in this ensuing arms race between new
defense and attacking strategies is the importance of the metric
of the distortion, i.e., how to measure the distance from the
original sample. In whitebox attacks, the L∞, L1, and L2

norms are often used to measure the distortion [6], [12],
[13], [18]. Interestingly, the state-of-the-art defense method
proposed by Madry et al. [18] has shown to be robust against
attacks with L∞ bounded perturbations, while it has been
found to be vulnerable against attacks with the elastic net (L1

plus L2) bounded perturbations [13], [14].
Naturally, the choice of the perturbation metric impacts the

human perception, e.g., limiting the L2 norm makes the visual
quality of the image better while limiting the L1 norm assures
sparsity of the distortion. However, the finding above implies
that sparser regularization might help gradient-based whitebox
optimization find stronger adversarial samples. Our results in
this paper might imply something similar or at least related—
sparser random walk steps help exploration move along the
decision boundaries, and produce stronger adversarial samples
under the blackbox scenario. Further investigation is left as
future work.

V. CONCLUSION

In this paper, we investigated how statistics of random vari-
ables affect random walk based blackbox attacking strategy.
Specifically, we proposed Lévy-Attack, a generalization of the
state-of-the-art boundary attack, where random walk is driven
by symmetric α-stable random variables. Our experiments
showed that the impulsive characteristics of the α-stable distri-
bution enables efficient exploration in the data space without
crossing decision boundaries, producing stronger adversarial
samples. In our future work, we investigate the use of ex-
planation methods [21]–[24] for adversarial attack detection
and further study the relation between norm bounds, sparse
exploration, and the quality of adversarial samples.
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