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Abstract—In this paper we present a novel weighted NMF
(WNMF) algorithm for interpolating missing data. The proposed
approach has a computational cost equivalent to that of standard
NMF and, additionally, has the flexibility to control the degree
of interpolation in the missing data regions. Existing WNMF
methods do not offer this capability and, thereby, tend to
overestimate the values in the masked regions. By constraining
the estimates of the missing-data regions, the proposed approach
allows for a better trade-off in the interpolation. We further
demonstrate the applicability of WNMF and missing data estima-
tion to the problem of speech enhancement. In this preliminary
work, we consider the improvement obtainable by applying the
proposed method to ideal binary mask-based gain functions. The
instrumental quality metrics (PESQ and SNR) clearly indicate
the added benefit of the missing data interpolation, compared to
the output of the ideal binary mask. This preliminary work opens
up novel possibilities not only in the field of speech enhancement
but also, more generally, in the field of missing data interpolation
using NMF.

Index Terms—Weighted NMF, speech enhancement, binary
mask, mask smoothing

I. INTRODUCTION

The goal of traditional single-channel speech enhancement
is to define a gain or mask function G ∈

[
0, 1
]

in some
chosen representation of the signal such that G is close to 1 in
regions where the target speech is dominant and close to 0 (or
some chosen threshold value) where the background noise is
dominant. The chosen representation of the signal is generally
some form of a time-frequency decomposition. Further the
noise power spectrum is usually estimated from the noisy
signal under the assumptions that this noise is uncorrelated
with the target speech and has a stationarity span that is larger
than that of the target speech. Several well known approaches
to estimate the noise floor may be found in the literature [1]–
[3]. The G can then be estimated by standard approaches in
the literature, e.g. [4]–[7].

Another well-known method to obtain G is the binary mask
which quantises the G to either 0 or 1, depending on the ratio
between the speech and interference energy in a segment and a
chosen decision threshold. The binary mask approach, coupled
with oracle information on target and interference energy is
often used to investigate the potential of single-channel speech

enhancement approaches. Such an oracle-mask is termed the
ideal binary mask (IBM) [8], [9] in the literature.

In all cases of single-channel speech enhancement, the G
serves to highlight the ‘reliable’ regions of the noisy signal, i.e.
regions that predominantly contain the target speech. However,
irrespective of whether the G is obtained as an IBM or by
any practical enhancement method, there are often regions of
the target speech that are suppressed, either due to errors in
the estimation of the noise floor (in practical approaches) or
because the ratio of signal energy to interference energy fell
below the set threshold for the IBM. This leads to ‘holes’ in
the reconstructed signal, which can produce audible artefacts.
The influence of these errors could be reduced by estimating
such missing data points by some form of interpolation. We
focus here, on the use of non-negative matrix factorisation
(NMF) [10] as one such tool for missing data interpolation.

NMF allows a low-rank approximation of a large non-
negative matrix by decomposing it as a product of two
smaller nonnegative matrices. Such a decomposition gives
interpretable representations that are used in various data
analysis applications. When applied to a speech spectrogram,
the NMF decomposition yields the latent structure and the
activations of the basic frequency components. While NMF
is a powerful data handling tool, it cannot be directly applied
to matrices with missing data. Hence a variant of NMF called
weighted NMF (WNMF), was developed to decompose data
matrices with incomplete (missing) observations in the matrix.
This approach treats an incomplete data matrix as being the
product of an underlying full data matrix, multiplied with
a binary mask where a ‘1’ indicates an observation and ‘0’
indicates missing data. WNMF was first proposed in [11], for
the cost function based on the Euclidean distance measure
and multiplicative update rules were derived for this case.
However, for several signal matrices with a high dynamic
range of the data (e.g. audio signals), the Kullback-Leibler
(KL) divergence cost function is more appropriate [12]. Espe-
cially for audio, this cost function emphasises the perceptually
important low energy, high frequency components.

However, extending the WNMF approach of [11] to the
KL divergence measure leads to outliers/overestimation of the
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component matrices of the NMF decomposition. To address
this issue, an alternative approach [13] based on expectation
maximisation (EM) was proposed. In this method, the parame-
ters (basis and activation matrices) of the low-dimensional lin-
ear model are updated in the M-step and the missing entries are
replaced by the NMF estimate of the data matrix in the E-step.
Since missing data entries are directly replaced by the NMF
estimate and the NMF decomposition is iterated on this ‘filled-
in’ data matrix, two issues arise: (1) the extent of interpolation
is not tunable, leading to overestimation of the missing values
and (2) after each E-step, the EM-NMF requires a complete
NMF (equivalent to hundreds of updates of the parameters) in
the M-step, resulting in a high computational cost.

In this paper we propose a new WNMF approach based
on the KL divergence, where the missing data regions are
estimated in a constrained manner. By changing the weight on
the constraint, the extent of interpolation in the missing-data
regions can be controlled. Furthermore, the complexity of this
method is equivalent to that of a conventional NMF approach
based on multiplicative updates. Our goal in developing this
method was to use NMF to interpolate among the poorly
estimated regions of the denoised speech spectra, to further
improve the clean speech spectral estimate after noise suppres-
sion. We therefore demonstrate the suitability of this method
(as compared to the state-of-the-art EM-based WNMF) in an
application of single-channel noise suppression by IBMs.

In the following we first describe the signal model and
the state-of-the-art. We then propose our constrained WNMF
approach and compare it with the state-of-the-art. Finally,
we carry out an instrumental evaluation of the approach
and demonstrate its potential for the case where the clean
speech spectrum is estimated by an IBM. We note that this is
preliminary work, and in the final section give the directions
for future research.

II. NMF AND WEIGHTED NMF

Consider an (M × N) dimensional non-negative and real-
valued data matrix X. NMF seeks a factorisation of X into
component non-negative matrices W ∈ RM×R and H ∈
RR×N such that X ≈ WH. In such a representation, the
matrices W and H are respectively termed the ‘bases’ and
the ‘activations’. The latent structure in X is assumed to be
captured in W. Further, if R < (MN/(M+N)), we obtain a
low-rank approximation of X. The cost functions commonly
used to find the optimal W and H are based on the Euclidean
distance or the Kullback-Leibler divergence. These are given
in (1). Multiplicative update rules are typically used for the
updates of the parameters.

J Euclidean(W,H
)

=
1

2

∑
m,n

(
Xmn −

(
WH

)
mn

)2
(1)

J KL(W,H
)

=
∑
m,n

(
Xmn log

(
Xmn(

WH
)
mn

)
−Xmn +

(
WH

)
mn

)

If, instead of X we had the matrix X̃ where not all
elements mn of X̃ were ‘observed’, we have an incomplete
representation of X. Decomposing X̃ ≈ W̃H̃ would lead
to the NMF trying to minimise the error across all entries,
observed and unobserved, which leads to an underestimation
of the parameters. To overcome this problem, a weighted NMF
was proposed in [11] and was developed for the Euclidean
distance measure as:

JWNMF(W,H
)

=
1

2

∑
m,n

Gmn

(
X̃mn −

(
WH

)
mn

)2
, (2)

where Gmn was a binary weight assigned to the missing-
data matrix X̃, where a ‘1’ signified that the corresponding
data point is observed and ‘0’ indicated that the data point
was unobserved/missing. Multiplicative update rules were sub-
sequently derived to estimate the parameters. However, this
approach demonstrates poorer convergence and stability issues
(especially when applied to the KL divergence measure).
Further, in general, it tends to overestimate the data in the
missing regions.

III. EM-WNMF

To deal with the drawbacks of the WNMF, a two-stage ap-
proach based on expectation maximisation (EM) was proposed
in [13]. In this approach, the E-step corresponds to imputation
where the missing data regions are filled-in using the current
model estimate and the standard NMF multiplicative updates
are applied on the filled-in matrix in the M-step. This two-
stage approach is summarised below:

• E-Step: update the missing values using the previous
NMF estimate.

Y ← G � X̃ +
(
1M×N − G

)
�WH (3)

• M-Step: re-compute the NMF decomposition on the
filled-in data matrix.

W←W �

( Y

WH
HT

1HT

)
(4)

H← H�

(
WT Y

WH
WT1

)
,

where 1 represents an (M ×N) matrix of ones, � represents
the Hadamard product and the division is element-wise. This
approach is carried out in multiple iterations of the E-and the
M-steps. For each imputation step, the parameters W and H
have to be re-estimated, requiring several hundred iterations of
the conventional updates. This leads to a high computational
cost, which can be somewhat improved by the approaches
in [14]. Another issue with this approach is the following:
since the missing/unknown values of the data matrix are
replaced in their entirety by the low-rank model estimates,
there is no means to control the degree of the interpolation,
leading to over-estimation.
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IV. CONSTRAINED WNMF (C-WNMF)

The above considerations lead us to propose the following
constrained version of the KL-divergence based weighted
NMF cost function:

J C-WNMF(W,H
)

=
∑
m,n

Gmn

(
X̃mn log

(
Xmn(

WH
)
mn

)
(5)

− X̃mn +
(
WH

)
mn

)
+ λ(1− Gmn)(WH)mn ,

where λ is a parameter that allows us to control the degree
of interpolation in the missing-data regions. From this cost
function, the following multiplicative update rules can be
derived:

W←W �

( G � X̃

WH
HT(

G + λ
(
1− G

))
HT

)
(6)

H← H�

(
WT G � X̃

WH

WT
(
G + λ

(
1− G

))
)
,

where the various operators have the same meaning previously
ascribed.

It is easy to see that when there is no missing data, the
above rules converge to the traditional (non-weighted) NMF
updates.

V. APPLICATION TO SPEECH ENHANCEMENT

First, consider a speech signal (magnitude) spectrum S
where parts of the spectrum are ‘missing’ (i.e. by application
of a random binary mask). The estimation of this spectrum by
the various NMF methods is depicted in the Figure 1, where
it can be seen that in addition to the lower computational
cost (equivalent to that of a standard NMF), the C-WNMF
approach also has a better interpolation capability. In addition,
the parameter λ can be chosen to trade-off the amount of
interpolation.

This synthetic example sets the context for the following
realistic application to speech enhancement. Consider a speech
signal s(n) corrupted by additive background noise v(n). The
noisy mixture is then denoted as x(n) = s(n) + v(n). Speech
enhancement and noise suppression is usually carried out in
the short-time Fourier representation of the signal, obtained by
computing the discrete Fourier transform (DFT) on windowed
and overlapped segments of the signal. This leads to the
following representation:

X(`, k) = S(`, k) + V (`, k) , (7)

where ` and k represent the time-frame and frequency bin
indices respectively. Enhancement is carried out by weighting
X(`, k) by the gain function G

(
`, k
)
∈ [0, 1], such that G is

high in speech-dominated time-frequency regions and low in
noise-dominated regions. As a first application to demonstrate
the potential of WNMF for spectral interpolation, we choose
the ideal binary mask (IBM) as the enhancement function.

The IBM gain function is based on oracle knowledge and is
defined as in (8).

GIBM(`, k) =

{
1 |S(`, k)|2 > Γ|V (`, k)|2

0 otherwise
(8)

with Γ being a threshold parameter.
Applying the IBM to the noisy amplitude spectrum
|X(`, k)| yields the ‘missing-data’ matrix we use for the
weighted NMF. We consider X̃ to be the IBM-masked spec-
trum:

X̃(`, k) = G(`, k)|X(`, k)|. (9)

The WNMF decomposition of this yields X̃ ≈ WH, from
which we then generate a new gain function by:

GWNMF(`, k) = min

(
1,

(WH)`,k
|X(`, k)|

)
(10)

Since this mask should only estimate the missing regions of
the spectrum, the final gain function is obtained as:

GInterp(`, k) =
(
1− GIBM(`, k)

)
GWNMF(`, k) + GIBM(`, k)

(11)

VI. EXPERIMENTS AND RESULTS

A. Experimental set-up

To demonstrate the benefit of WNMF-based interpolation,
we compare the performance of the IBM against the EM-
WNMF and the C-WNMF based interpolation applied to (10)
and (11). For this we consider input speech files consisting
of 4 male and 4 female voices taken from the TSP-speech
database [15]. Pink and babble noise from the ETSI noise
database [16] are added to these clean speech signals at SNRs
of −5 and 0 dB.

We conduct our experiments at a sample rate fs = 16 kHz,
a DFT size of K = 512 samples, and a frame shift of 25%.
A periodic square root Hann window is employed for both
analysis and overlap-add synthesis. A dictionary size of 40 is
chosen for the NMF approaches. C-WNMF is further tested
with two constraint parameters λ ∈ {0.1, 0.4}.

The instrumental measures chosen are PESQ and seg-
mental SNR improvement. The segmental SNR improvement
(SegSNRi) is computed as:

SegSNRi = SegSNRout − SegSNRin (12)

where SegSNRin is the average input segmental SNR, mea-
sured using the clean speech and the noise scaled to the input
SNR value. SegSNRout is the average output segmental SNR
measured by applying the resulting gain function separately
to the clean speech and the scaled noise signal. This measure
gives an indication of the amount of noise suppression. The
SegSNR is defined according to [17].

Good speech component quality is reflected in a high PESQ
mean opinion score (MOS-LQO) [18] which is applied to
the filtered clean speech component, with the clean speech
component as a reference. We do not measure PESQ on
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Fig. 1. Toy example illustrating the application of WNMF for missing data interpolation in speech enhancement. The first plot indicates the clean (underlying)
spectrum. The second plot shows the spectrum with missing components (generated by a random binary mask), the third and fourth plots depict the low-rank
signal reconstruction by EM-WNMF and the proposed C-WNMF. The artefacts generated in the EM-WNMF due to over-estimation are highlighted for
convenience. Note, also, the better signal estimate for the C-WNMF, clearly visible for the fricatives around t ≈ 1.8 s and t ≈ 2.3 s. Thus, in addition to
lower computational complexity, the C-WNMF also demonstrates a better interpolation capability. A constraint of λ = 0.1 was chosen for C-WNMF.

the enhanced signal since PESQ has not been validated for
artefacts caused by noise reduction techniques. This is in line
with the reasoning in [19]

B. Results and Observations

The table below shows the PESQ and SegSNRi scores ob-
tained after noise suppression using IBM and the interpolated
masks using the EM-WNMF and the proposed C-WNMF
approaches.

TABLE I
AVERAGE PESQ AND SEGSNRI SCORES OBTAINED AFTER NOISE

SUPPRESSION USING THE IBM, THE EM-WNMF APPROACH AND THE
PROPOSED C-WNMF METHOD FOR GAIN INTERPOLATION FOR THE 0DB

AND -5DB CASES. THE DICTIONARY SIZE IS 40.

IBM EM-WNMF C-WNMF C-WNMF
(λ = 0.1) (λ = 0.4)

SNR = 0dB
PESQ 1.83 2.81 2.22 2.05

SegSNRi 7.60 4.43 6.32 6.93
SNR = -5dB

PESQ 1.82 2.70 2.16 2.00
SegSNRi 8.05 5.20 7.15 7.50

From Table I we observe that the PESQ scores of the
proposed C-WNMF are higher than those of IBM. Since this is
PESQ measured on the filtered clean-speech signal it indicates
that the C-WNMF preserves more speech components. At
the same time, the SegSNRi of C-WNMF is comparable to
that of the IBM approach, indicating that the improvement
in the speech quality is not at the cost of noise suppression.
In comparison, the EM-WNMF method shows a much higher
PESQ score, but also correspondingly much lower SegSNRi.
This indicates an over-estimation of the missing regions,
leading to noise-vocoded output. When comparing the C-
WNMF results for different values of the λ, we see how
this provides a control over the interpolation. Increasing the λ
leads to less interpolation (evidenced by the drop in the PESQ
scores and an increase in the SegSNRi scores). Thus, we come
closer to the performance of the IBM as the λ increases. Note,
however, that there is still some measure of interpolation being
done, hence even for λ = 1, we expect the performance of

interpolated gain function using C-WNMF to be better than
that of the IBM in terms of speech quality, while the noise
suppression would be comparable to that of the IBM.

VII. CONCLUSIONS

We have introduced a new weighted NMF (WNMF) ap-
proach for missing-data interpolation, which allows control
on the level of interpolation of the missing data. This ap-
proach, termed constrained WNMF (C-WNMF), has been
demonstrated to be superior to the state-of-the-art, both in
terms of computational cost as well as interpolation capability.
We have further demonstrated its use in a speech enhance-
ment framework, considering an oracle-knowledge based gain
function (the ideal binary mask (IBM)). Note that we chose
the IBM for this analysis since it allows us to analyse our
method by disregarding (for the present) possible interactions
with other components (e.g., noise power estimation, gain
computation) in a real noise-suppression framework. We note
that this paper serves primarily to demonstrate the benefit of
the new C-WNMF method compared to the state-of-the-art and
is a first study on the use of NMF in this context of speech
enhancement. There are several opportunities to expand upon
this topic and in the future, we would like to investigate and
extend this method for the case of soft-masks and evaluate
it for the case where the masks are not ideal but estimated
within a single-channel noise suppression framework.
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