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Abstract—Navigation is known to be a hard Sequential
Decision-Making problem that attracts the attention of a large
number of fields like Artificial Intelligence or Robotics. In this
work, we approach the problem of partially observable navigation
with a reactive system trained by model-free Reinforcement
Learning. The advantages of this learned approach include
reducing the engineering effort at the cost of more computing
power during training. We designed an agent and an environ-
ment with a focus on being able to navigate independently of
the map. We use well-tested general Reinforcement Learning
algorithms without any hyper-parameter tuning and achieve
promising results. Our results show that several general purpose
Reinforcement Learning algorithms can reach the target in
our navigation setup more than 85% of the episodes. Hence,
these algorithms may provide a significant step forward towards
autonomous navigation systems.

Index Terms—Navigation, Reinforcement Learning, Robotics,
Artificial Intelligence, Partially Observable Markov Decision
Processes

I. INTRODUCTION

Navigation is in the intersection between different fields
like Artificial Intelligence, Robotics or Sequential Decision
Making. It has been a challenge for many years to create
systems that can traverse an environment without having
previously explored it and doing it consistently as humans
or animals do.

Classical Navigation approaches rely on internal represen-
tations or mappings of the state. The two most used ones
in robotics are planning and mapping and sometimes the
integration of these two [1]. The basics of planning are well
covered in sources like [2]. More advanced methods can be
found in [3] or [4]. However, these methods face the additional
problem of accurately estimating the representation of the
environment with Simultaneous Localization and Mapping
(SLAM) algorithms [5], [6] apart from navigating in it.

Mapping approaches include memory-less methods that
only act on instantaneous sensing data [7], like in our ap-
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proach, but then using planning methods to create trajectories.
Similar approaches called reactive use a memory-less repre-
sentation of the environment and choose its trajectory from
closed form solutions [8]. This last type of methods is the
ones we are trying to learn with Reinforcement Learning.

Also, there is another disadvantage with the computation
cost and memory footprint of these systems, which makes
them harder to fit in small and low-powered embedded systems
such as the processor unit in a small Unmanned Aerial Vehicle.

There has been recent interesting work on trying to learn to
navigate with different representations of the map [9], [10] that
pose simple tasks of navigating a grid-like maze environment
and solve it with different policy architectures that use external
memory. Or learning to navigate with implicit representations
using general Reinforcement Learning (RL) algorithms [11],
[12], [13], [14] however some of these works over-fit heavily
on the the environment [12], [11] or use perceptually complex
environments where the underlying structure is a simple graph
[15], [16].

In this work we explore the approach of a reactive system,
biologically inspired, that does not face problems related
to internal map representations because it acts reacting to
the observations. We attempt to solve this problem with
different out of the box model-free Reinforcement Learning
algorithms [17] and compare how well they perform in a
simple but challenging environment. These algorithms have
shown promising success in different tasks like superhuman
performance in games like Atari [18] or Go [19]. And the ad-
vantage over handcrafted systems is that given the appropriate
task definition and problem statement, it is possible to leverage
computing power to replace a human effort of writing a very
complex program with all the rules for a learned system that
solves the task.

Model-free algorithms are promising in tasks where it is
difficult to hard-code all the rules of the system and it is hard to
gather lots of expert data for supervised algorithms, but where
simulation and computing power are cheap and available.
However aside from these advantages they also face different
challenges [20] that have to be taken into account in order to
succeed in our task. In this work, we will explain the strategies
and design decisions used to deal with problems such as
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Sample Inefficiency, Reward Sparsity or Environmental Over-
fitting.

The rest of the work goes as follows: in section II we
define the problem and set the theoretical background we are
following. Section III describes our system and the design
decisions involved. In section IV we analyze and comment
the results and finally section V draws some conclusions.

II. PROBLEM DESCRIPTION

A. Navigation

Navigation is the field that studies the skills and techniques
needed by a mobile system to traverse an environment. From
the different tasks involved in Navigation, we choose to tackle
PointGoal [5] where the agent will have to move in the
environment to reach the goal point ‖~d‖ < ε with a controlled
speed ‖~v‖ < ε, with ε being a distance threshold and ε a speed
threshold. This task is trivial if there are no obstacles in the en-
vironment but navigating in a cluttered environment is an NP-
hard problem [2]. Reaching the objective depends on all the
previous actions taken, thus making Navigation a sequential
decision problem where the sensors provide the input signal
and after we process them our system outputs an action. We
will use a mathematical model that suits this problem called
Partially Observable Markov Decision Processes (POMDP).

B. POMDP

We can formulate the problem as a POMDP, which is an
extension of Markov Decision Processes where the agent is
unable to observe the current state. This means that for each
time step t the agent only has an observation o which may
not contain all the information of the state s.

A partially observable Markov decision process is formu-
lated [21] as a tuple 〈S,A, T,R,Ω, O〉, where:

• S is a set of states of the world. In our case, it is infinite
because the space is continuous.

• A is a finite set of actions.
• T : S ×A → Π(S) is the state-transition function, giving

for each world state and action, a probability distribution
over world states. We write T (s, a, s′) for the probability
of ending in state s′ , given that the agent starts in state
s and takes action a.

• R : S×A → R is the reward function, giving the expected
immediate reward gained by the agent for taking each
action in each state. We write r(s, a) for the instantaneous
reward for taking action a in state s.

• Ω is an infinite set of observations the agent can experi-
ence of its world.

• O : S × A → Π(Ω) is the observation function, which
gives, for each action and resulting state, a probabil-
ity distribution over possible observations. We write
O(s′, a, o) for the probability of obtaining observation
o given that the agent took action a and landed in state
s′.

We define in (1) a performance metric RT as the expected
sum of discounted rewards, using a discount factor of 0 <
γ < 1 for a sequence of rewards in an episode of length T.

RT = E

[
T−1∑
t=0

γtrt

]
(1)

C. Reinforcement Learning

We define the policy π as the function that maps from
observations to actions. If the observation space is finite we
could use a look-up table. But when we have a continuous
observation space and we do not approximate by discretizing
it, we have to use a more powerful function approximator.
In our case we use a Multi-Layer Perceptron [22], mapping
at = f(ot; θ), where θ are the Multi-Layer Perceptron param-
eters .

The Reinforcement Learning problem is to find or to ap-
proximate the optimal policy π∗ that maximizes the perfor-
mance metric defined in (1).

π∗ = argπ maxRT (2)

It is approximated with different algorithms. It can be done
mainly by two methods:
• Policy Optimization where the performance objective
RT (πθ) is optimized by gradient ascent of the policy
function or by maximizing local approximations of the
policy function. As in the methods A2C [23], ACKTR
[24], ACER [25].

• Q-Learning that learns an approximator Qθ(s, a) for the
optimal action-value function Q∗(s, a), that tells how
good is to take an action in a certain state and is used to
derive the optimal policy π∗. As in DQN [18].

In this work, we compare different approaches as there
are certain trade-offs between sample-efficiency and reliability
[26].

III. EXPERIMENT DETAILS

A. System Description

The model studied in the experiments consists of an agent,
which represents the mobile that navigates, and an environ-
ment, which represents the world in which the agent is located.
The interactions between agent and environment happen at
discrete time steps. For each time step t the agent receives an
observation ot and a reward rt, and interacts with the environ-
ment by taking an action at, which may affect the state st+1

of the environment and the future observations. This feedback
loop allows us to define episodes of a maximum length T
where the RL algorithm will try to maximize the performance
score RT (πθ) enough to solve the task of reaching the goal
point without collisions.

The agent has no prior knowledge of the environment and
only sees what it is received by the observations. In our system,
ot are the raw sensory input and they do not contain all the
information of the state of the environment. We define the
observation vector as the concatenation of several elements:
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• The first two elements are the Cartesian coordinates of
the clipped distance vector (3)

~dclipped =
dmax(~ptarget − ~pagent)

max (dmax, ‖~ptarget − ~pagent‖)
(3)

Where ~ptarget and ~pagent are the positions of the target
and the agent. Where dmax is a threshold distance that
limits the size of the distance vector, making the agent
generalize better over maps of different sizes. In practical
terms dmax can be seen as the limited range of the
sensors.

• The third and fourth elements are the components of the
velocity vector ~v.

• And the rest of the input elements are a radial collision
lattice around the agent that simulates proximity sensors
like a lidar device. The value of the lattice elements take
values of 1 when they collide with an obstacle and 0
when they do not.

For each time step t the output of the agent after processing
signal ot is action at . This action is an integer representing
the choice between 4 possible actions. These choice of actions
are increasing or decreasing one of the components of the
velocity, thus accelerating in one of four possible directions.
We chose to model the actions as a discrete choice because
it conditions the available algorithms and limits the computa-
tional complexity of the problem.

We found that other environments [27], [28], [16] used to
benchmark this type of task were either discrete grids, where
the obstacle avoidance problem is trivialized or lacked the
diversity in environments making the agent memorize the map
and not being able to generalize across different scenarios.

Our environment follows simple yet realistic dynamic rules
with continuous space, which follows a double integrator
equations (4) in which inertia is taken into account. We address
the diversity problem by randomizing the generation of the
environment which we later explain in subsection III-C.

~pt+1 = ~pt + ~vt∆t

~vt+1 = (F~at − k~vt)∆t+ ~vt

(4)

Where F is a constant used to regulate the force of the
acceleration and k = F

|vmax| is a term used to add some
friction. The term ~at represents the action as a direction vector
in which the force is applied. The vector ~p is the position
vector and ~v is the velocity vector. The constant ∆t is the
time step.

B. The Agent

We defined the Agent as a system where the output are
the actions at and the inputs are the observations ot and the
reward rt that we use in the performance function we try to
optimize.

As the scope of this work is not focused on the algorithmic
side of RL, we chose to use a well tested and documented

implementation of the algorithms taken from [17] and used
without any hyper-parameter tuning.

However, RL has some problems [20], [29] which, if not
taken care of, can lead to failure in our task. The first
one is sample inefficiency, meaning that these algorithms
take millions of steps to converge. The second problem is
reliability: due to the stochastic nature of the algorithms used,
these will sometimes fail to converge. Another problem we
face is that sparse rewards lead to slower training, so we
should use a denser reward than +1 if you reach the target,
else 0. But the definition of the reward is the definition of the
problem, so we should make sure it captures the task we want
to achieve and the correct way to do it. Another problem is the
Environment over-fitting, meaning that if there is not enough
diversity in the spaces explored by the agent, it may just be
memorizing how to act in that specific environment which does
not generalize well to unseen ones. These problems are tackled
with the design decisions and strategies in the Environment we
created.

C. The Environment

The environment consists of a 2D rectangular map with
3 rectangular obstacles placed randomly inside, the starting
point and the goal location. To mitigate the problem of sample
efficiency we did the environment very simple so that it could
run fast and the agents could be trained in a couple of hours.
We can see an example of a generated environment in Fig. 1a
where the gray rectangles are the obstacles, the green dot is
the starting point and the red dot is the goal.

(a) Example of a generated
map with 3 obstacles.

(b) Example of a successful
trajectory.

Fig. 1: Example of the map and a sample trajectory

The definition of the problem in the environment is done
through reward shaping. We want the agent to arrive at the
spot and not crash, so we include those factors into the reward
function with the first two cases of (6). Then we want the
reward to be dense, meaning that it takes nonzero values in
places other than end-states because it speeds up training. To
solve the reward sparsity problem we designed a function (5)
for the third case of (6) that took into account three factors
that captured the problem definition.
• We want to take distance into account, the closer to the

target the better. This is represented in the first element
of the expression(− d2

100 ).
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• We want to include the speed in the reward, but only
close to the target, as our goal is to reach the target with
a limited speed. This is captured in the second element
of the expression (−min((3v2 − 80), 0) (d2+1)

(3d2+1) ) that is
quadratic with the speed but only in a region close to the
target.

• We also want the agent to reach the target fast so we
should take time into consideration by making all the
reward negative except for the successful ending. This
is captured in the third element of the expression (−80)
which offsets all the expression under 0.

The plot of the function of (5) along the distance and speed
axis can be seen in Fig. 2:

f(~d,~v) = −‖
~d‖2

100
−min((3‖~v‖2 − 80), 0)

(‖~d‖2 + 1)

(3‖~d‖2 + 1)
− 80

(5)

r(s, a) =


−10 crash
+10 ‖~d‖ < ε, ‖~v‖ < ε

f(~d,~v) else
(6)

Fig. 2: The reward function over the distance and speed axis.

Every episode the environment will change the size and
location of the obstacles, starting point and goal location
making the agent unable to memorize the environment and
forcing it to develop a strategy that enables it to reach
the objective independently of the disposition. The idea of
randomizing the environment in training was a key point in
[20] and proved to be an effective yet simple solution to over-
fitting the environment.

IV. RESULTS

The training for each algorithm was run 10 times with
different seeds to make sure the less reliable methods con-
verged. At the end of 106 time-steps of training the agents were
evaluated for 100 episodes and its performance was measured.
We evaluate the performance of the algorithms by four metrics.
• The first one, reliability refers to the percentage of the 10

seeds that did not collapse the policy to bad local maxima,
meaning the percentage of seeds in which from the 100
evaluation runs at least 10 runs reached the objective.

A2C ACER
DQN ACKTR

Fig. 3: Learning curves of the best seed for each algorithm
smoothed over 400 time steps. Shadowed area represents
±0.5σ over the smoothed average.

• The second one is time. Measuring the average time it
took the algorithms to train for 1M timesteps.

• The third metric, average score refers to the mean reward
in the last 100 evaluation time-steps. The evolution of
this metric during the training is shown in Fig. 3. By
design decisions of the reward function, it will be always
negative except for the success-case where the agent
reaches the goal, this means that the performance metric
will mostly be negative. So to understand better this
metric, when the average score goes above -1.5, it means
that the agent starts completing episodes. This is why we
use the fourth metric, to clarify and explain in a more
qualitative way how the algorithm is performing.

• The fourth metric is the percentage of successfully fin-
ished episodes in the 100 evaluation runs, which is much
more descriptive than the average score. For the third and
fourth metric, we chose the best performing seed of each
algorithm.

TABLE I: Algorithm Performance

Alg. Performance
Name Reliability Time Avg.Score Completed
DQN 100% 3380s ± 12s -1.156 85%
A2C 100% 2450s ± 6s -0.957 88%

ACER 40% 2859s ± 36s -0.990 87%
ACKTR 100% 2097s ± 28s -1.190 86%

The results are displayed in Table I and the training curves
are shown in Fig. 3. Looking at them we see that the
algorithms DQN and ACKTR rapidly converged to an average
score close to the final performance, and steadily increased
from there. The A2C algorithm is the slowest one to converge
but steadily rises to higher performance than the other three.
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The ACER algorithm quickly converges to an average score
of -3 and until later in training, it does not leave the bad local
maxima. About the reliability of ACER, only four of the ten
seeds managed to converge to a policy that reached the target.
These results could be explained because ACER is trained
off-policy and these methods are supposed to be more sample
efficient but less stable [26]. Looking at the time category we
can see that DQN is the slowest, and ACKTR is the fastest
computationally.

Regarding the Completed score of the four algorithms,
we can note that they successfully completed the task more
than 85% of the times which is impressive for a general-
purpose reinforcement learning algorithm that started without
any previous knowledge about the task it is solving.

On qualitative analysis, while watching the agent during
training, we can point out what several stages of the training
looked like. At the beginning with the randomly initialized
policy, the agent moved erratically shaking or directly going
outside the map. When it reaches the plateau of -3 of Average
Score, it learned to move in opposite directions each time-
step, resulting in standing still and avoiding crashes and bad
outcomes. But it was also unable to reach the target. Finally,
when the agent is trained we can see it avoids certain obstacles
like in Fig. 1b, but failed to evade others when it moves fast.
So we should take into account that an 85% does not represent
an industry-ready navigation algorithm, but provides a strong
result for model-free RL algorithms and settles a baseline to
compare other methods to it.

V. CONCLUSION

In this work, we approach the problem of partially observ-
able navigation with a reactive system trained by model-free
Reinforcement Learning. This approach is attractive because
it can reduce engineering effort at the cost of more computing
power during training. We designed an agent with a focus on
it being able to navigate independently of the map. And we
developed an environment with a reward function that captures
the problem we are trying to solve. We used well-tested RL
algorithms without any hyper-parameter tuning and achieved
promising results. Going from agents moving aimlessly, to
reaching the target more than 85% of the episodes. Despite
having promising results, there is still work to be done
with this approach and other ones to achieve industry-ready
navigation systems.
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