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Abstract—This paper introduces and evaluates the Gesture-
Keeper, a robust hand-gesture recognition system based on a
wearable inertial measurements unit (IMU). The identification
of the time windows where the gestures occur, without relying
on an explicit user action or a special gesture marker, is a very
challenging task. To address this problem, GestureKeeper identi-
fies the start of a gesture by exploiting the underlying dynamics
of the associated time series using a recurrence quantification
analysis (RQA). RQA is a powerful method for nonlinear time-
series analysis, which enables the detection of critical transitions
in the system’s dynamical behavior. Most importantly, it does
not make any assumption about the underlying distribution
or model that governs the data. Having estimated the gesture
window, a support vector machine is employed to recognize the
specific gesture. Our proposed method is evaluated by means
of a small-scale pilot study at FORTH and demonstrated that
GestureKeeper can identify correctly the start of a gesture with a
87% mean balanced accuracy and classify correctly the specific
hand-gesture with a mean accuracy of over 96%. To the best
of our knowledge, GestureKeeper is the first automatic hand-
gesture identification system based only on accelerometer. The
performance analysis reveals the predictive power of the features
and the system’s robustness in the presence of additive noise.
We also performed a sensitivity analysis to examine the impact
of various parameters and a comparative analysis of different
classifiers (SVM, random forests). Most importantly, the system
can be extended to incorporate a large dictionary of gestures and
operate without further calibration for a new user.

Index Terms—Hand-gesture identification and recognition,
inertial measurement unit, support vector machine, recurrence
quantification analysis

I. INTRODUCTION

In general, hand-gesture recognition systems can be clas-
sified in two categories, according to the type of sensors
they employ, namely, the camera- and the wearable-based
ones. The camera-based systems can achieve high recognition
accuracy, but at a relatively high computational cost [1]. The
performance of these systems is sensitive in the background,
light conditions, and room geometry, and constrained by the
field of view of the camera. On the other hand, sensor-
based systems, worn on the wrist, leg, arm, chest, ankle,
head and/or waist, employ accelerometers, gyroscopes and
magnetometers, barometers, body sensor networks [2], elec-
tromyography sensors [3], or even sound sensors [4]. They

This work is partially funded by the “Human Resources Development, Ed-
ucation and Life Lifelong Learning” for the implementation of the European
Social Fund and the Youth Employment Initiative, and the Hellenic Foundation
for Research and Innovation (HFRI) and the General Secretariat for Research
and Technology (GSRT) under grant agreement No. 2285 (neuronXnet).
Contact author Maria Papadopouli.

have relatively small cost, are not particularly sensitive to the
environmental conditions (e.g. light or geometry conditions),
and can function in indoor and outdoor spaces. Although, in
general, wearable sensors are energy-constrained, due to the
rapid advances of the micro-electromechanical technologies
in reducing their size and enhancing their energy efficiency,
they have gained a lot of attention in hand-gesture recognition
(HGR), human activity recognition (HAR) [5]–[9] and even
in human writing recognition [10]. These systems collect
data from the on-board sensors and apply either machine
learning algorithms [11]–[16], mathematical models [4], [17],
[18], fuzzy control techniques [19] or simple threshold-based
algorithms [20] to recognize the user’s gestures. Inertial
measurement units are extremely useful and commonly-used
for orientation/heading estimation [21], [22]. The prevalence
of accelerometers, gyroscopes and magnetometers in smart-
phones for estimating their orientation has enabled various
interesting applications in the gesture recognition domain.

This paper introduces and evaluates the GestureKeeper, an
innovative robust hand-gesture identification and recognition
system based on a wearable inertial measurements unit (IMU).
In the context of daily activities, the user can control an
appliance by performing a specific gesture. The identification
of starting and ending points of the time windows, where the
gestures occur, without relying on an explicit user action, as
in [11], or a special gesture marker, as in [23], is challenging.
To address this problem, GestureKeeper identifies the start
of a gesture by exploiting the underlying dynamics of the
associated time series using recurrence quantification analysis
(RQA). RQA is a powerful method for nonlinear time-series
analysis, which enables the detection of critical transitions in
the system’s dynamics (e.g. deterministic, stochastic). Most
importantly, it does not make any assumption about the under-
lying distribution or model that governs the data. Moreover,
it can be used even for relatively small and non-stationary
datasets. More specifically, our proposed method capitalizes
on the efficiency of RQA to extract the underlying dynamics
of a recorded sensor data stream by mapping the associated
time series in a higher-dimensional phase space of trajectories.
A major advantage of RQA is its fully self-tuned nature, in
the sense that no prior parameter fine-tuning is required in a
manual fashion.

To the best of our knowledge, GestureKeeper is the first
automatic hand-gesture identification system based only on
accelerometers. Furthermore, it can recognize accurately a
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dictionary of 12 hand-gestures by applying support vector
machines (SVM) on a hybrid set of statistical and sample-type
features. The evaluation was performed in a small-scale pilot
study at FORTH. This paper demonstrates that GestureKeeper
can recognize gestures from our 12-hand-gesture dictionary
with a mean accuracy of about 96%. The analysis also
reveals the predictive power of the features and the system’s
robustness in the presence of additive noise. We performed
a sensitivity analysis to examine the impact of various pa-
rameters. Finally, to comparatively assess the performance of
SVM, we also applied random forests. SVM still achieves a
higher accuracy. The rest of the paper is organized as follows:
Section II overviews our system, its architecture, and the two
main sub-systems, while Section III summarizes our main
conclusions and future research directions.

II. GESTUREKEEPER SYSTEM DESIGN

GestureKeeper consists of a wearable sensor and a server.
The wearable sensor sends periodically its collected measure-
ments to the server, while the server performs the gesture
identification and recognition. Our dictionary consists of 12
gestures. Their names, short descriptions, and trajectories in
space are shown below.

• Up: Vertical movement towards the ceiling
• Down: Vertical movement towards the ground
• Left: Horizontal movement to the left
• Right: Horizontal movement to the right
• CW: Clock-wise rotational movement
• CCW: Counter Clock-wise rotational movement
• Z: Z trajectory starting from above
• AZ: Mirror Z trajectory starting from below
• S: Wave trajectory to the right
• AS: Wave trajectory to the left
• Push: Horizontal movement away from the body
• Pull: Horizontal movement towards the body

Fig. 1. Dictionary of gestures and hand placement.

Experiments and Data Collection. We employed the
shimmer3 [24], a wearable device equipped with 3-axis ac-
celerometer, gyroscope, and magnetometer. We first calibrated
the sensors and then configured each of them according to
the needs of our implementation. For example, due to the
relatively low expected acceleration, we chose a relatively

small detection range for the accelerometer increasing this
way its resolution. The final sampling frequency was set to
50 Hz, which is considered sufficient (given our observations
from a number of fast steep movement experiments). An
additional increase of the frequency will only increase the
power consumption of the device and the measurement size
without, however, enhancing the amount of information about
the user’s movement. Finally, the data streaming and logging
applications are responsible to collect the data during the
experiments.

For the recognition sub-system, we performed a small field
study with 15 subjects (9 female, 6 male). Each subject
repeated a number of gestures (from the predefined dictionary
of gestures), collecting in total 900 different repetitions. For
each repetition, 63 statistical features and 30 acceleration-type
features, which represent values of acceleration in the x, y and
z axes, were extracted. This dataset had the isolated periods
during which a gesture was performed. For the identification
sub-system, a new dataset was produced, containing gestures
as well as activities of daily living (ADL). The new dataset has
a total duration of 3 hours and 45 minutes, with measurements
collected from 4 new subjects (2 female, 2 male).

A. Gesture Identification
We first focus on the problem of identifying the start

of a gesture in a recorded data stream. We speculate that
different gestures are characterized by distinct dynamics of the
associated time series. This motivated the use of RQA, which
enables the detection of transitions in the dynamical behavior
(e.g. deterministic, chaotic, etc.) of the observed system. A
major advantage of RQA is its fully self-tuned nature, in
the sense that no prior parameter fine-tuning is required in
a manual fashion. More specifically, a recurrence plot (RP)
is derived first, which depicts those times at which a state
of a dynamical system recurs, thus revealing all the times
when the phase space trajectory of the dynamical system
visits roughly the same area in the phase space. To this end,
RPs enable the investigation of an m-dimensional phase space
trajectory through a two-dimensional representation of its
recurrences. Such recurrence of a state occurring at time i, at a
different time j is represented within a square matrix with ones
(recurrence) and zeros (non-recurrence), where both axes are
time axes. Given a time series of length N , {ri}Ni=1, a phase
space trajectory is reconstructed via time-delay embedding,

xi = [ri, ri+τ , . . . , ri+(m−1)τ ] , i = 1, . . . , Ns , (1)

where m is the embedding dimension, τ is the delay, and
Ns = N−(m−1)τ is the number of states. Having constructed
a phase space representation, an RP is defined as follows,

Ri,j = Θ (ε− ‖xi − xj‖p) , i, j = 1, . . . , Ns , (2)

where xi, xj ∈ Rm are the states, ε is a threshold, ‖ · ‖p
denotes a general `p norm, and Θ(·) is the Heaviside step
function, whose discrete form is defined by

Θ(n) =

{
1, if n ≥ 0

0, if n < 0
, n ∈ R . (3)
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Typically, several linear (and/or curvilinear) structures ap-
pear in RPs, which provide hints about the time evolution
of the high-dimensional phase space trajectories. Besides, a
major advantage of RPs is that they can be applied to short and
non-stationary data. The visual interpretation of RPs, which is
often difficult and subjective, is enhanced by means of several
numerical measures for the quantification of the structure and
complexity of RPs [25]. These quantification measures provide
a global picture of the underlying dynamical behavior during
the entire period covered by the recorded data. The temporal
evolution of RQA measures and the subsequent detection of
transient dynamics are enabled for each recorded sensor stream
by employing a windowed version of RQA. Doing so, the
corresponding quantification measures are computed in small
windows, which are then merged to form our feature matrix.
Furthermore, it is noted that the length of the sliding win-
dow yields a compromise between resolving small-scale local
fluctuations and detecting more global recurrence structures.

The gesture identification of the GestureKeeper employs
two RQA metrics, namely, the recurrence rate (RR) and the
transitivity (TRA) ( [26]), obtained from the y-axis accelera-
tion data, in order to form the feature matrix1.

Estimation of Embedding Parameters. In our implemen-
tation, the optimal time delay τ is estimated as the first
minimum of the average mutual information (AMI) func-
tion [27]. Concerning the embedding dimension m, a minimal
sufficient value is estimated using the method of false nearest
neighbours (FNN) [28]. Furthermore, the Euclidean norm is
used as our selected distance metric for the construction of
the RP, while a rule-of-thumb is currently used to set the
threshold ε = 0.2

√
m. The window length refers to the size

of the signal in which RQA is performed each time before
being shifted by a step size to the next values. We selected a
window size of 125 samples, which represents approximately
2.5 seconds of information, sufficient for capturing even the
longest of the dictionary’s gestures. The step was set equal to
25 samples (i.e., 80% overlap between consecutive windows).
By applying the above criteria on our data, the estimated
embedding parameters are equal to m = 4 and τ = 1.
Although the empirical rule for selecting ε yields ε = 0.4,
a higher accuracy was observed for ε = 0.1.

An SVM classifier based on these two features was then
employed to classify the data in two classes, namely, gestures
and ADL, thus distinguishing the gestures from the rest of the
hand movements.

B. Gesture Recognition

The gesture recognition is based on an SVM classifier using
the radial kernel2. For the classification, we employed two
types of features, namely the statistical features and samples
of the acceleration signal. The statistical features include the
mean, median, root mean square (RMS), standard deviation,

1We initially employed an extended RQA measures set but observed that the
aforementioned two measures are sufficient to identify the gesture time-windows.

2Radial kernel was shown in our sensitivity analysis to have the best accuracy among
the polynomial, linear, and sigmoid.

variance, skewness and kurtosis, of the 3D acceleration, an-
gular velocity, and magnetism time series provided by the
sensor. The sample based features are formed by a re-sampling
process of the x, y and z axis acceleration3. After re-sampling,
the new signal is composed of a fixed number of samples for
each acceleration time series. The final set of features includes
the statistical ones (introduced earlier) along with this number
of samples of the re-sampled acceleration signal for each of
the x-, y-, and z-axis time series.

C. Performance Analysis

Gesture Identification: GestureKeeper first utilizes RQA in
order to extract features for the identification sub-system,
thereafter uses an SVM model, trained with the aforemen-
tioned features, for identifying correctly the windows that
contain gestures. Note that the ADL and gesture classes are
highly unbalanced: only 0.5% of the data belong to the class
“gestures” and the 99.5% is ADL. To analyze the performance
of the identification process, we trained the SVM classifier
(with a polynomial kernel of degree = 3, coefficient = 2,
cost = 3, and gamma = 0.954) using all subjects except one,
which was then used for testing. Given that the ADL and
gesture classes are highly unbalanced, we randomly selected
a subset of the ADL class of equal size as the gesture one.
We performed the training and testing on this dataset. This
process was repeated for 100 iterations. We reported the mean
accuracy for each subject of the testing. The accuracy for each
subject varies from 76.9% to 91.1% (with a mean accuracy of
87.21%).

TABLE I
LIST OF ALL THE PARAMETERS THAT WERE USED IN GESTUREKEEPER

RQA SVM Identification SVM Recognition
Parameters Value Parameters Value Parameters Value
Disntance Metric Eucl. Norm Kernel polyn. Kernel radial
Window size 125 Gamma (γ) 0.95 Gamma (γ) 0.005
Window step 25 Cost (c) 3 Cost (c) 1
Delay (τ ) 1 Degree 3
Dimensions (m) 4 Coefficient 2
Threshold (ε) 0.1

Gesture Recognition: As mentioned earlier in Sec. II-B, an
SVM model with different parameters is employed for the final
classification of the gestures in one of the 12 in total classes of
our dictionary. To assess the predictive power of the statistical
features, we performed the following process: First, we per-
muted a feature, keeping the values of the remaining features
of the dataset fixed. Then, the model is trained and tested with
this dataset. The mean accuracy is based on 100 repetitions.
We then repeated the same process, selecting each time to
permute a different feature from the original dataset. The
multiclass classification model employs the “one-against-one”
approach, in which 12·(12−1)/2 binary classifiers are trained
and the appropriate class is selected by a voting scheme. The

3The original acceleration signal consists of 3 time series, one for each axis, of
unknown length (since it depends on the particular gesture and the user who performed
the movement).

4We also examined various classifiers using different kernels, such as linear, sigmoid,
radial, and parameters values. The reported results were obtained using the above values.
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mean accuracy for the different permuted features is shown in
Fig. 2. The horizontal line indicates the mean accuracy for the
original dataset without any feature permutation. The larger the
decrease in the accuracy, the more significant the information
that the corresponding feature provides in gesture recognition.
It appears that the mean and skewness of the z-axis angular
velocity are the most significant ones.

Fig. 2. Mean accuracy under a single-feature permutation (indicated in the
x-axis). Features are based on simple statistics of data collected from ac-
celerometer, gyroscope, and magnetometer from each of the three dimensions.
Original line: no feature has been permuted. (CI = 95% confidence interval)

A similar procedure was also applied for the acceleration-
sample-based features. We examined a different number of
samples for each time series (in the range of 4-12). In the
case of ten samples per time series, the fourth, fifth, sixth
value of the re-sampled x-axis acceleration have a significant
impact on accuracy, while the remaining features exhibit a
similar predictive power for the gesture recognition (as shown
in Fig. 3). However, unlike the statistical features, all the
acceleration-sample-based ones have a substantial contribution
on the accuracy (as the accuracy using the original dataset
is greater from the one using the permuted ones). Note
that the first 10 samples that refer to acceleration in x axis
carry more information than the others. Specifically, the most
important feature tends to be the middle value of the x-axis
signal (sample 5). Fig. 4 shows the accuracy of the gesture
classification, when only the sample features are used, as a
function of the sample size. The impact on the accuracy is
prominent for a sample size of 5 or less.

Our gesture recognition classifier employs in total 73 fea-
tures, namely the 43 most significant statistical features and 10
samples-based features from each acceleration time series. The
above analysis was performed using the default SVM hyper-
parameters, namely, cost c = 1 and γ = 1/number of features.

Experiments and SVM Tuning. We train the gesture
recognition classifier using the data collected from the 14 out
of 15 subjects for training and the other one’s for testing. We
performed tests for all the 15 combinations of training and
testing partitions.

The hyper-parameters that we tuned are the cost (c) and
gamma (γ) values. The cost represents the weight for pe-
nalizing the “soft margin”. Consequently, a large cost value

Fig. 3. Mean accuracy under a single-feature permutation (indicated in the
x-axis). The first ten features correspond to a re-sampling of the acceleration
data in the x-axis, while the 11th-20th (21th-30th) features correspond to y-
axis (z-axis), respectively. Original line: no feature has been permuted. (CI =
95% confidence interval)

Fig. 4. Mean accuracy vs. number of samples per time series.

penalizes the SVM for data points within the margin or on the
wrong side of the dividing hyper-plane. For this reason, for a
large c, the SVM will try to find more complex hyper-planes,
and possibly smaller margins that leave less data points in the
wrong side, but is also more prone to over-fitting. In contrast,
for small c values, the margins of the SVM will be larger and
the hyper-plane less complex, making it more robust but also
less accurate. This motivates the need for carefully addressing
the tradeoff of accuracy and robustness. The gamma parameter
refers to the kernel and depends on the number of features that
each specific implementation has. Intuitively, gamma controls
the number of support vectors and by extension the sensitivity
of the decision boundary (hyper-plane), which will affect
whether or not some data points near the margins will be
ignored. A sensitivity analysis with different cost and gamma
values reports the best performance for c = 1, γ = 0.005.
Fig. 5 shows the accuracy of each subject’s data as testing
set for the following datasets, namely, all statistical features,
only significant statistical ones, only samples, both significant
statistical features and the samples (proposed dataset), with
a mean accuracy of 94.44%, 94.44%, 92.88%, and 96.22%,

2019 27th European Signal Processing Conference (EUSIPCO)



Fig. 5. Mean accuracy of each subject’s data for different datasets.

respectively. The best performance is obtained when all the
significant statistical features and samples-based ones are
employed. The presence of all the parameters that were used in
this paper is considered essential for any further experimental
evaluation. Therefore Table I shows the parameters for the
RQA and the SVM model of the first and second sub-system,
respectively.

To comparatively evaluate the recognition sub-system, we
also developed classifiers based on random forests. We evalu-
ated them using the (first) dataset (that was also used for the
recognition sub-system based on SVM). After training and
tuning5, random forests reported a best accuracy of 88% as
opposed to 96% of the proposed method using SVM.

Finally, we assessed the impact of noise on the accuracy
of the gesture recognition sub-system. The mean accuracy
was increased to 97.89%, when each feature vector of the
original (clear) training dataset was augmented by a copy of
a corrupted one (produced by adding Gaussian noise with
standard deviation of 0.5).

III. CONCLUSION

This paper presents GestureKeeper which employs an ac-
celerometer, gyroscope and magnetometer, from a wearable
IMU, to first identify time-windows that contain a gesture,
and then, recognize which specific gesture it is. GestureKeeper
uses features based on statistical properties and acceleration
samples. It can accurately recognize gestures from our 12-
hand-gesture dictionary, exhibiting its best performance when
the combination of features are used (e.g., about 96% mean
accuracy). With the noise addition and feature selection, the
mean accuracy is increased to over 97%. It is modular and can
be extended to recognize a larger gesture dictionary size. The
pilot field study was performed in a relatively controlled small-
scale environment. We plan to extend the evaluation under
more realistic conditions. Moreover, it is critical to correctly
center the gesture for each of the identified time-windows,

5The sensitivity analysis for the random forests reported best accuracy for 100 trees
in the forest and a maximum depth of the tree equal to 10. The minimum number of
samples required to split an internal node and the minimum number of samples required
to be at a leaf node were left with the default values of 2 and 1 respectively as they did
not seem to effect the accuracy.

as we observed a significant accuracy drop. We will explore
the use of long-short term memory (LSTM) networks and
conditional random fields in the gesture recognition to address
these challenges.
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