
BEV Object Tracking for LIDAR-based Ground
Truth Generation

David Montero∗, Nerea Aranjuelo∗, Orti Senderos∗ and Marcos Nieto∗
∗Vicomtech, Mikeletegi 57, P. Tecnológico, 20009, San Sebastián, Spain

Email: see http://www.vicomtech.org

Abstract—Building ADAS (Advanced Driver Assistance Sys-
tems) or AD (Autonomous Driving) vehicles implies the acquisi-
tion of large volumes of data and a costly annotation process to
create labeled metadata. Labels are then used for either ground
truth composition (for test and validation of algorithms) or to
set-up training datasets for machine learning processes. In this
paper we present a 3D object tracking mechanism that operates
on detections from point cloud sequences. It works in two steps:
first an online phase which runs a Branch and Bound algorithm
(BBA) to solve the association between detections and tracks,
and a second filtering step which adds the required temporal
smoothness. Results on KITTI dataset show the produced tracks
are accurate and robust against noisy and missing detections, as
produced by state-of-the-art deep learning detectors.

I. INTRODUCTION

In recent years, huge improvements have been made in the
field of Advanced Driver Assistance Systems (ADAS). Current
ADAS are capable to perceive the surrounding environment of
the vehicle by using sensors and take real-time decisions for
safety (emergency braking, lane departure warning) or comfort
(lane keeping system, automatic cruise control).

Most of these achievements have been possible thanks to the
continuous and rapid advances in Deep Learning (DL) [1][2].
New DL models can process the data captured by different
sensors, such as cameras or LIDARs, to obtain a precise
estimation of the scene (e.g. other vehicles, pedestrians, traffic
signs). However, the accuracy of these models depends almost
entirely on the richness of the dataset used for training.

DL models require training with huge amounts of data
precisely annotated. The annotation process is costly and slow,
usually requiring large groups of human operators creating the
labels with specific tools. This process is the main bottleneck
for the improvement of DL and as a consequence, ADAS.

In order to reduce this cost and accelerate the process,
many annotation tools, automatic and semi-automatic, have
been developed using different approaches [3][4]. Though,
automatic annotation tools are not perfect and they introduce
errors or inaccuracies to the annotations, which need always to
be corrected or, in the best case, validated as ground truth. In
the case of object annotation, it is critical that the automated
step produce labels which are not only accurate in space (e.g.
a bounding box in 2D or cuboid in 3D), but also coherent
in time, thus assigning single identifiers to objects through
the sequence. In this paper we propose an offline 3D object
tracking algorithm as a part of a semi-automatic annotation
tool for LIDAR data.

Fig. 1. Diagram of the annotation process.

Multi-object tracking is usually focused on solving how to
associate incoming new detections to existing tracks [5], in
an online process whose main requirement is to operate real-
time. Offline processes, on the contrary, tend to find a graph
with all possible associations and solve it in a joint optimized
process, which result in very slow batch processes.

In our work we propose an approach which is as fast
as online processes, by means of defining an online frame-
level association problem, but solving it with a recursive
function which ensures optimal association, plus additional
post-processing steps which provide the necessary estimation
smoothness. Our approach aims to obtain the highest possible
accuracy in the least possible time in order to work effectively
in a semi-automatic annotation process.

II. SYSTEM OVERVIEW

Figure 1 illustrates the pipeline of the annotation tool which
includes the proposed tracking component. The annotation
process is divided in a series of steps, starting with the
generation of the recordings from the sensorized vehicles.

LIDAR streams (3D point cloud sequences) are then pre-
processed to create bird’s-eye view (BEV) images (also called
top view images, see section III-A), which are then used as
input for the Convolutional Neural Network (CNN) detectors
(see section III). The detector outputs are cuboids in 3D space,
defined as Zt,n = (x, y, z, rx, ry, rz, w, h, l, c, s), where t is
the time step, n is the detected object number in that time step,
x, y and z are the object center coordinates, rx, ry and rz
are the object rotation angles, w, h and l are it width, height,
and length, c is the class number, and s is the confidence
of the detection. This data will be converted into a standard
format using the VCD converter1, and will serve as the input

1https://vicomtech.box.com/v/vcd-library-linux-windows

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

data for the tracker. The tracker will associate the input
object detections between the different time steps, generate
predictions where detections are missing and finally correct
the input object properties by applying a post-process to the
generated tracks (see section IV). As a result, the VCD payload
describing the scene is updated with the tracking information
and sent to a web application for the final annotation step
carried out by human operators.

III. OBJECT DETECTION

Using latest advances in object detection with DL algo-
rithms [1], we have trained a CNN to generate oriented
bounding box detections based on LIDAR point clouds.

A. 3D Point Cloud Representation

A Velodyne HDL-64E laser scanner produces about one
million 3D points per second [6]. Applying detection algo-
rithms directly on these point clouds is normally avoided
because of their sparse nature and the large amount of data
to be processed [7][8]. Due to the high dimensionality and
sparsity of the data, we have adopted an approach based on
BEV map data representation. The point cloud is projected
to the ground plane and discretized into a 2D grid of cells
with resolution of 0.1 x 0.1m. Only the points inside a range
of [(-40, 40), (-40, 40), (-1.75, 1.25)] meters are considered,
taking the LIDAR position as the origin of coordinates. For
each cell, the minimum, average and maximum heights of all
the contained points are stored. These 3 features are stored as
a 3-channel matrix with size of 800×800 and fed into a CNN.

B. Deep neural network

The trained network takes the encoded feature maps as input
and produces oriented 3D boxes for the considered object
classes. The network is based on Faster R-CNN architecture
[9], which consists on two main stages. First, a Region
Proposal Network (RPN) generates bounding boxes with ob-
ject candidates. In the second stage, for each box proposal,
extracted features are used to classify it, as well as to regress
the final box coordinates as well as its rotation angle. Non-
maximum suppression (NMS) is used to reduce redundancy
of highly overlapped boxes. We use a IoU (Intersection-over-
Union) threshold of 0.7 for NMS. The backbone network we
use for feature extraction is ResNet-101 [10].

Fig. 2. Neural network architecture for oriented box detection.

The model is optimized for a multi-task loss function, which
combines classification and bounding box regression losses

[9]. Different from the original Faster R-CNN architecture,
which does not predict the orientation of the boxes, an extra
loss term is added [11] to minimize the error between the
estimated rotated box and the ground truth.

The network is trained in an end-to-end fashion. Weights
are initialized with pretrained weights on ImageNet data [12].
The training dataset is generated with the sequences published
so far from the public driving dataset nuScenes [13]. Augmen-
tation techniques are applied to augment samples containing
the least frequent classes. The total amount of training samples
is 20000, including 9 different object classes: car, pedestrian,
cyclist, train, truck, bus, motorist, construction vehicle and
trailer. Custom anchor boxes are designed for each class.

For each time step t, each object prediction is parameterized
by Zt,d as defined in previous section. The height of the
bounding box is estimated based on the object class.

IV. TRACKING

As mentioned in section II, the tracker is in charge of
associating the input objects between the different time steps,
generating missing tracking states in intermediate steps and
correcting the input object properties by applying a post-
process to the generated tracks. A diagram describing the
tracking process can be found in Figure 3.

Fig. 3. Offline tracking dataflow where input data stands for the obtained
CNN detections, and output data are the updated tracks.

The tracking process is divided into two main components.
First, the online component is executed as a loop where, at
each iteration, a new time step (i.e. frame) of the input data is
processed. Tracks are then updated using predictions based on
their previous information and the new input detections. In the
correction step an association matrix is generated and solved
in order to match existing tracks predictions with detected
objects and the tracks are updated. Finally, a post-process adds
smoothness to produced tracks both in position and rotation.

A. Linear prediction

It is assumed that detections are filtered by their score using
a suitable user-defined threshold before feeding the tracker, so
the variable of Zt,n is not used during the tracking process.

After analyzing the data and the use case, the following con-
clusions were reached. z position, rx and ry is approximately
constant in almost every case, therefore it does not provide
relevant information. Also, rz is a noisy variable and will be
corrected in the post-process. So we decided to discard these
variables from the prediction model. Similarly, the object size

2019 27th European Signal Processing Conference (EUSIPCO)

and the class variables are assumed to be constants, so they
are not considered for the prediction.

After this filter, the prediction variables are x, y and rz .
For solving this problem, it was decided to use a con-
stant acceleration model. So, considering all the previous
information, a track state will be represented by St,m =
(x, y, ẋ, ẏ, ẍ, ÿ, z, rx, ry, rz, w, h, l, c), where t is the time step,
and m is the index of the track.

B. Association matrix

For the association between the tracks states and the de-
tections an association matrix is defined. Let this matrix be
Am×n where M is the number of existing tracks, and N is
the number of incoming detections.

Each entry of A encodes the association likelihood (between
0 and 1) of track m and detection n. Before computing the
likelihood, it is checked that the track and the detection class
belongs to the same group. Two groups are defined based on
the detector output classes: a vehicle class (cars, trucks and
buses) and a human class (pedestrians, cyclists and bikers).
This is applied because classes of the same group are more
likely to be confused by the detector.

Only the 2D position variables (x and y) are taken in
account for the likelihood computing, due to the noise in
the rz , sx and sy . The likelihood function can be selected
as any decaying function around the predicted state of the
track. Therefore, we need first to define the distance between
the centroids of the predicted track p = (px, py)> and the
detection q = (qx, qy)>, as d′ = (p− q).

The model must include the uncertainty of the prediction
itself and the noise of the detections. For convenience, we
use a bivariate normal distribution on a normalized distance d
between the centroids of the predicted track and the detection.
This distance will be rotated so the x axis aligned with the
velocity vector, using θ = atan(vy, vx):

d′ = d′
(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(1)

Thus, the distance is normalized as:

d =

(
max(0, |d′x| − ε)

dmax
,
max(0, |d′y| − ε)

dmax

)>
(2)

where ε is the detection noise, and dmax is the maximum
association distance, which depends on the class group of the
track. This normalization ensures that the distance measure
includes the detection noise.

The likelihood function is then defined as:

L(d) =
1√

(2π)2|σ|
exp(−1

2
(d>σ−1d)) (3)

where σ is the covariance matrix which defines the shape
of the likelihood function. As we need a likelihood function
ranged between 0 and 1, we need to select σx = σy = 1√

2π
.

Then, the likelihood is redefined as:

L(d) = exp(−(||d||2π)) = exp(−d2xπ)exp(−d2yπ) (4)

As we want to include the uncertainty of the prediction
process, we truncate this function to a certain limit, defined
by an ellipse aligned with the velocity vector of the track and
which axis length will depend on the prediction certainty. The
axes of the ellipse can be defined as:

sx = dmax + (1 + ||v||(∆t+ 1))γx

sy = dmax + (1 + ||v||(∆t+ 1))γy
(5)

where ||v|| is the magnitude of the velocity vector of the
track, ∆t depends on the number of steps passed since the
last association of a detection with the track, and γx and γy
are factors which elongate the ellipse according to the expected
object dynamics (e.g. for cars, we have found that γx = 2.0
and γy = 0.3 encode well its inertia).

Then, the ellipse is defined as dS−1d = 1, where S is the
matrix that defines the axes of the ellipse: S = diag(s2x, s

2
y).

C. Association matrix resolution

Solving correctly the association matrix is crucial for the
tracking, as a wrong or sub-optimal match in a time step
propagates the error for the rest of the sequence. Two ways of
solving it are considered and tested: (i) the Greedy Algorithm
(GA)[14], used as baseline for comparison; and (ii) our
proposed modified Branch and Bound Algorithm (BBA) [15].

GA works selecting individually the global maximum out
of the matrix and setting to zero its corresponding row and
column, and iterating finding next maxima until the matrix is
emptied. BBA works, instead, in a recursive manner, finding
maxima and then exploring the tree of possible suboptimal
associations in order to find better joint likelihoods for the
entire matrix. BAA guarantees that the sum of the likelihood
of the produced associations is optimal, while GA does not.

GA is usually faster than BBA when there is a high number
of candidates, but results using BBA are better in most of
the cases. The two algorithms were implemented and tested
in different scenarios. The results of some of those tests are
presented in table I, where the errors are the number of steps
in which the sum of the likelihood is worse using the GA,
Max diff is the maximum difference of the BBA and GA
likelihood sum registered, GA time is the average time of
the GA implementation execution and the BBA time is the
algorithm implementation execution, both in microseconds and
per frame. Although this table shows relatively small errors of
the GA results at frame-level, the impact of these errors is
extremely significant as they are propagated to the rest of the
sequence causing erroneous tracks.

TABLE I
ASSOCIATION ALGORITHMS COMPARISON

Scenario Steps Errors Max diff GA time BBA time
Street road 611 10 0.423 20 µs 35 µs
Parking 1 189 5 0.703 29 µs 45 µs
Parking 2 404 6 0.559 110 µs 132 µs

Considering the tests results and the priority of the accuracy
over the processing time it was decided to use a modified

2019 27th European Signal Processing Conference (EUSIPCO)

BBA as the matrix solver. In the proposed implementation,
the algorithm starts associating each track with the detection
with the best likelihood. Then it looks for collisions (where
a collision stands for the case where two tracks have been
associated with the same detection). If it finds any, then a
recursive function will be called until it finds the best collisions
free combination. The algorithm can be found in algorithm 1,
where candidates variable is the association vector.

Algorithm 1 B&B Recursive Function
procedure SOLVECOL(candidates, a, b)

candidatesA← candidates
candidatesA(a)← getNextCandidate(a)
candidatesA← checkCol(candidatesA)
scoreA←

∑n tracks−1
i=0 Li,candidatesA(i)

candidatesB ← candidates
candidatesB(b)← getNextCandidate(b)
candidatesB ← checkCol(candidatesB)
scoreB ←

∑n tracks−1
i=0 Li,candidatesB(i)

if scoreA ≥ scoreB then
return candidatesA

return candidatesB
procedure CHECKCOL(candidates)

for i← 0; i < n tracks− 1; i← i+ 1 do
for j ← i+ 1; j < n tracks; j ← j + 1 do

if candidates(i) = candidates(j) then
candidates← solveCol(candidates, i, j)

return candidates

D. Estimation and tracks updating

Once the association matrix is solved, the tracks new state
will be estimated. The position estimation will be calculated
correcting the detection position using the equation 6, where
p can be x or y, distp is the difference between prediction
and detection positions, prednp is the prediction noise, which
depends on the velocity, the number of steps without detections
(∆t) and a noise coefficient, and detn is the detection noise.

pest = pdet + (max(0, distp −max(prednp − detn), 0)))/2

prednp = (distp/||distp||)||vp||∆tγp
(6)

The velocity in x and y is calculated by the difference
between the new and the last estimated positions divided by the
difference of steps, and smoothed using a linear interpolation
with the last 3 velocity values registered. The same method is
used for the acceleration in x and y. For the rest of the state
variables, the value of the detection variables will be assign,
since they will be treated in post-processing.

After the new tracks states are computed, the missing tracks
states from previous steps will be generated using a linear
interpolation. Also, it will be checked if there are dead tracks
(without an associated detection in the last n steps) and
separate them from the active ones. Finally, new tracks will
be generated using the unassociated detections.

E. Tracks post-processing

Once the online stage has finished, the post-processing stage
will begin. The aim of this stage is to remove orphan tracks and
to correct the detection noisiest variables, the z axis rotation

angle and the class. They are considered as orphan tracks all
the tracks that has less than n states, and they will be removed,
since they have a high probability of being erroneous.

For the rz correction, it is assumed that, in most cases, the
detection value is right, and that it wont change drastically
from one step to another, so it will be calculated using the
mode between s− n and s + n steps, being s the current step
number. Also, the track size will be corrected using the mode
of every track states, as it should be constant in every step.
Finally, for the track class variable, it is again assumed that,
in most cases, the detection value is right, so it will receive
the value of the mode between all track steps.

V. TESTS & DISCUSSION

In this section we present an experimental analysis of our
method. We validate the tracker using the first 10 of the 22
training sequences with ground truth of the KITTI dataset with
the tracking metrics proposed in [16].

In the ideal situation when detections are perfect, using the
ground truth boxes from the KITTI dataset, we have observed
that the tracker produces perfect tracks, without error.

A. Ablation study

We perform an ablation study on the input data in order
to measure the impact of imperfect detections on the tracking
results. We define three types of detection problems: (i) spatial
noise; (ii) temporal sparsity; and (iii) a combination of both.
The first test evaluates the effect of translation, rotation and
size measurement noise in the detections. The temporal spar-
sity refers refers to the miss-detections of objects in specific
frames. For the first test define a probability of 50% to apply
randomly a noise between −20% and 20% to each detection in
each frame. The experiment is repeated 10 times; the average
results for each sequence are shown in Table II.

TABLE II
TRACKER RESULTS WITH SPATIAL NOISE

Seq MOTA F1 MT PT ML FRAG
0 0.8626 0.9319 12.0 0.0 0.0 33.0
1 0.8561 0.9292 90.4 1.6 0.0 177.1
2 0.8684 0.9346 15.6 0.4 0.0 68.4
3 0.8485 0.9253 9.0 0.0 0.0 25.8
4 0.8511 0.9270 29.3 1.6 0.1 59.7
5 0.8402 0.9212 33.5 0.5 0.0 91.6
6 0.8383 0.9203 12.8 0.2 0.0 48
7 0.8520 0.9268 56.7 0.3 0.0 163.2
8 0.8459 0.9237 24.2 0.8 0.0 92.8
9 0.8664 0.9338 87.0 1.0 0.0 185.9

Temporal sparsity is analyzed following the same process
and suppressing 20% of each object detections randomly
across the sequence (see Table III).

For the third test we combine the spatial noise and the
temporal sparsity to simulate a real detector (see Table IV).
We can observe the tracker is able to solve temporal sparsity
better than spatial noise, since, in the correction stage, the
tracker assumes the position of detections are highly reliable.

2019 27th European Signal Processing Conference (EUSIPCO)

TABLE III
TRACKER RESULTS WITH TEMPORAL NOISE

Seq MOTA F1 MT PT ML FRAG
0 0.9897 0.9964 12.0 0.0 0.0 3.8
1 0.9940 0.9983 92.0 0.0 0.0 8.4
2 0.9984 0.9996 16.0 0.0 0.0 0.9
3 0.9907 0.9977 9.0 0.0 0.0 1.8
4 0.9987 0.9997 31.0 0.0 0.0 0.6
5 0.9985 0.9995 34.0 0.0 0.0 1.0
6 0.9991 0.9998 13.0 0.0 0.0 0.3
7 0.9981 0.9995 57.0 0.0 0.0 2.4
8 0.9997 0.9999 25.0 0.0 0.0 0.2
9 0.9913 0.9977 88.0 0.0 0.0 13.4

TABLE IV
TRACKER RESULTS WITH COMBINED NOISE

Seq MOTA F1 MT PT ML FRAG
0 0.8770 0.9409 12.0 0.0 0.0 29.6
1 0.8778 0.9417 91.0 1.0 0.0 146.5
2 0.8935 0.9472 15.9 0.1 0.0 55.3
3 0.8454 0.9251 9.0 0.0 0.0 28.0
4 0.8735 0.9380 29.9 2.0 0.1 47.3
5 0.8640 0.9340 33.4 0.6 0.0 73.6
6 0.8693 0.9360 13.0 0.0 0.0 35.3
7 0.8689 0.9360 56.9 0.1 0.0 144.8
8 0.8771 0.9392 24.2 0.8 0.0 73.3
9 0.8783 0.9419 87.5 0.5 0.0 166.7

B. Study on generated detections

We finally analyze the results of the tracking when the input
estimations are generated by the trained point cloud based
object detector (see section III). The same evaluation metrics
are computed for this experiment. Results are shown in Table
V, where there is an extra column (F1D) with the F-Score
obtained with the detector output. In this experiment the

TABLE V
TRACKER RESULTS WITH REAL DETECTOR

Seq MOTA F1 F1D MT PT ML FRAG
0 0.5476 0.7650 0.7468 5 6 1 14
1 0.5389 0.7631 0.7420 50 20 21 92
2 0.3094 0.6491 0.6340 6 5 0 20
3 0.6265 0.8095 0.7800 4 2 3 9
4 0.6814 0.8490 0.7965 20 9 1 25
5 0.6280 0.8150 0.7077 14 9 11 34
6 0.7438 0.8788 0.8382 8 3 2 15
7 0.7000 0.8542 0.8473 43 11 3 70
8 0.5069 0.7554 0.7290 12 8 4 26
9 0.3406 0.6487 0.6382 29 26 27 106

MOTA results with real detections are, as expected, worse
than with ground truth detections due to their inherent noise.
However, there is always an improvement of F-Score, ranging
between 2− 5% thanks to the usage of the tracker.

VI. CONCLUSIONS

In this work, we have shown our implementation of a 3D
object offline tracking technique, which is robust against noisy
and sparse detections produced by deep learning detection

frameworks. Our approach combines the benefits of online
tracking schemas, and thus operating near real-time, and the
reliability of batch processes, by means of applying a recursive
implementation of the Branch and Bound algorithm (BBA) to
optimally solve the association problem.

In our experiments we show the BBA algorithm is optimal
with respect the usual Greedy Algorithm (GA) approach, while
keeping its computation under real-time requirements. Addi-
tionally, we have explored the impact of the noise and sparsity
of detections benchmarking our proposed work against the
ground truth from the KITTI dataset.

Furthermore, the proposed tracker is integrated into a web-
based annotation platform which takes the produced tracks
and presents them to teams of human annotators which refine,
correct and finally validate the annotations. Future work will
include a refinement of the score function at track level, so
that the interaction between the algorithm and the annotators
can be extended to offer finer level of control to the users.

VII. ACKNOWLEDGMENTS

This work has received funding from the European Com-
mission (EC) Horizon 2020 programme (grant agreement no.
688099, project Cloud-LSVA).

REFERENCES

[1] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A survey,”
arXiv preprint arXiv:1809.02165, 2018.

[2] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. Garcia-Rodriguez, “A review on deep learning techniques applied to
semantic segmentation,” arXiv preprint arXiv:1704.06857, 2017.

[3] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman, “Labelme:
a database and web-based tool for image annotation,” International
journal of computer vision, vol. 77, no. 1-3, pp. 157–173, 2008.

[4] S. Bianco, G. Ciocca, P. Napoletano, and R. Schettini, “An interactive
tool for manual, semi-automatic and automatic video annotation,” Com-
puter Vision and Image Understanding, vol. 131, pp. 88–99, 2015.

[5] H. S. Parekh, D. G. Thakore, and U. K. Jaliya, “A survey on object
detection and tracking methods,” IJIRCCE, vol. 2, pp. 2970–2979, 2014.

[6] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3354–3361, IEEE, 2012.

[7] Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li, and N. Sun, “Rt3d: Real-
time 3-d vehicle detection in lidar point cloud for autonomous driving,”
IEEE Robotics and Automation Letters, vol. 3, pp. 3434–3440, 2018.

[8] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7652–7660, 2018.

[9] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91–99, 2015.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[11] Y. Jiang, X. Zhu, X. Wang, S. Yang, W. Li, H. Wang, P. Fu, and Z. Luo,
“R2cnn: rotational region cnn for orientation robust scene text detection,”
arXiv preprint arXiv:1706.09579, 2017.

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] “Nuscenes.” https://www.nuscenes.org/. (Accessed on 25/02/2019).
[14] J. Edmonds, “Matroids and the greedy algorithm,” Mathematical pro-

gramming, vol. 1, no. 1, pp. 127–136, 1971.
[15] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”

Operations research, vol. 14, no. 4, pp. 699–719, 1966.
[16] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A

benchmark for multi-object tracking,” arXiv preprint:1603.00831, 2016.

2019 27th European Signal Processing Conference (EUSIPCO)

