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Abstract—Over the last years, i-vectors have been the state-of-
the-art approach in speaker recognition. Recent improvements
in deep learning have increased the discriminative quality of
i-vectors. However, deep learning architectures require a large
amount of labeled background data which is difficult in practice.
The aim of this paper is to propose an alternative scheme
in order to reduce the need of labeled data. We propose the
use of autoencoder pre-training in a speaker verification task.
First, we train an autoencoder in an unsupervised way, using
a large amount of unlabeled background data. Then, we train
a Deep Neural Network (DNN) initialized with the parameters
of the pre-trained autoencoder. The DNN training is carried out
in a supervised way using relatively small labeled background
data. In the testing phase, we extract speaker embeddings as
the output of an intermediate layer of the DNN. The training
and evaluation were performed on VoxCeleb-2 and VoxCeleb-
1 databases, respectively. The experimental results have shown
that by initializing DNN with the parameters of the pre-trained
autoencoder, we have achieved a relative improvement of 21%,
in terms of Equal Error Rate (EER), over the baseline i-
vector/PLDA system.

Index Terms—deep learning, autoencoders, i-vectors, speaker
verification

I. INTRODUCTION

The application of deep learning in speaker recognition is
highly influenced by its success both in image and speech
technologies [1, 2, 3, 4]. Deep learning applications in speaker
recognition can be categorized in front-end and backend. As a
front-end it is capable of learning deep features [5, 6, 7] and
bottle neck features (BNF) that are used to compute Gaussian
Mixture Models (GMM) posterior probabilities in a hybrid
HMM-DNN model [8, 9]. Deep learning is also capable of
learning speaker embeddings for speaker verification tasks
such as in [10, 11, 12, 13]. As a backend, it is applied to
improve the discriminative quality of i-vectors for speaker
verification in [14, 15, 16].

In most of the deep learning approaches for classification
tasks, it is required to train the network using a large amount of
labeled data. The Probabilistic Linear Discriminant Analysis
(PLDA) backend for i-vectors also requires labeled data.
However, in practice, it is difficult to access large amount of
labeled data, compared to unlabeled data. In this paper, we
try to reduce the demand of labeled data in i-vector based
speaker verification. Unsupervised deep learning approaches
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such as Restricted Boltzmann Machines (RBMs), Deep Belief
Networks (DBNs) and autoencoders do not necessarily require
labeled data. Several attempts have been made to improve the
performance of speaker recognition using such unsupervised
networks as in [17, 18, 19]. In [20, 19] a vector represen-
tation of speakers was proposed by means of RBMs in an
unsupervised manner. These approaches rely on training a
separate RBM model for every utterance in test data. Similarly,
in [21], various algorithms are proposed to tackle the same
problem using DBNs as a backend for i-vector based speaker
verification. However, they rely on training a separate model
for the target speaker only.

On the other hand, various alternatives of autoencoder
training has been proposed for speaker recognition like in [22,
23]. In [24] the encoder part of an autoencoder has been used
to extract speaker embeddings, that has been used for speaker
segmentation. In [25] a denoising autoencoder has been trained
to improve the signal quality. Similarly, in [26], autoencoder
has been trained to learn a mapping between i-vectors with
short and long utterances in speaker verification.

In this work, we propose the use of autoencoder pre-training
for extracting DNN speaker embeddings from i-vectors in
speaker verification task. In order to avoid the need of large
amount of labeled data, we train the autoencoder using a large
amount of unlabeled data. Then, we train a DNN classifier
using a relatively small amount of labeled data. We propose to
initialize the DNN training with the weight matrices and bias
vectors of the pre-trained autoencoder. In this way, we train
a hybrid autoencoder-DNN classifier. After the training, we
extract speaker embeddings from i-vectors as the output form
the second last layer of the network. The goal is to improve
the performance using fewer background speaker labels. The
experimental results have shown that the proposed approach
has improved the baseline system in two aspects. Firstly, the
proposed speaker embeddings, with cosine scoring, has gained
a relative improvement of 21%, in terms of EER, over the
baseline i-vector/PLDA system. Secondly, we have observed
that the hybrid autoencoder-DNN training converges faster as
compared to the one without autoencoder pre-training.

The rest of the paper is organized as follows. Section II
explains the proposed method for DNN speaker embeddings
extraction from i-vectors. Section III describes the experimen-
tal setup and database. The results obtained are discussed in
Section IV. Finally, some conclusions are drawn in section V.
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Fig. 1. Block diagram of the proposed speaker embeddings extraction from i-vectors using autoencoder pre-training.
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Fig. 2. (left) Autoencoder pre-training (right) DNN training.

II. PROPOSED METHOD

In this paper, we propose a new framework using au-
toencoder pre-training, to produce an alternative vector-based
representation of speakers. Unlike DNN classifiers and i-
vector/PLDA, we avoid using large amount of labeled data.
Fig. 1 shows the block diagram of the proposed speaker em-
beddings extraction process. First, we train an autoencoder, in
order to make use of the large amount of unlabeled background
i-vectors. The training is carried out in a conventional way
i.e., minimizing the Mean Square Error (MSE) loss between
input and reconstructed i-vectors using the Stochastic Gradient
Descent (SGD) optimizer. The autoencoder is supposed to
learn speaker independent information from the background
i-vectors as it has the ability to learn compact representation.

Once the autoencoder is trained, we train a DNN classifier in
a supervised way, in order to learn information about speaker
classes. We add a fully connected layer and a classification

layer after the last layer of the autoencoder. We feed speaker
labels at the output of the classification layer and train the
network in a supervised manner. This network is referred to
as hybrid autoencoder-DNN classifier and is trained using
relatively smaller labeled i-vectors. We initialize the hybrid
autoencoder-DNN with the weight matrices and bias vectors of
the pre-trained autoencoder. This type of initialization has been
applied for adapting the unsupervised model to learn speaker
specific information in [18, 20]. The autoencoder pre-training
helps in the supervised learning, and the network converges
relatively faster than without pre-training.

There are two different scenarios in order to use the pre-
trained autoencoder for the DNN initialization. One possibility
is to add the fully connected and classification layers directly
after the encoder part. The encoder part compresses the data
into a shorter dimensional space which preserves enough
information to reconstruct an approximation of the original
data. However, this was not recommended in our experiments
because in the hybrid autoencoder-DNN training the network
learns additional information from the speaker labels fed at
the output. The shorter dimensional space of the encoder part
is not enough to learn efficient information from the higher
dimensional classification layer.

Another scenario is to use the full autoencoder by adding
the fully connected and classification layers at the end of the
autoencoder. We prefer to expand the input data to its original
dimensional space and then train the hybrid autoencoder-DNN
classifier. In this way, firstly, we remove the unnecessary
information from the data by encoding it into shorter dimen-
sional space. Secondly, we expand the data back to its original
dimensional space in order to ease the learning of additional
information from the speaker labels.

Fig. 2 shows the architectures of both the autoencoder and
the DNN. The encoder part and decoder part are symmetric
as in a conventional autoencoder. The DNN has a similar
structure except the fully connected and the output layers.
Finally, we extract the output of the fully connected layer as
the desired speaker embeddings that have shown to preserve
speaker specific information. The test i-vectors are propagated
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Fig. 3. Comparison of the training convergence, in terms of validation loss,
between the conventional and the proposed training of the DNN classifier.

TABLE I
PERFORMANCE COMPARISON, IN TERMS OF EER (%), BETWEEN THE

BASELINE AND THE PROPOSED SPEAKER EMBEDDINGS.

Approach Scoring EER(%)
i-vector Cosine 17.61
i-vector PLDA 9.54

only-encoder-dnn Cosine 12.73
conventional-dnn Cosine 8.58

full-autoencoder-dnn Cosine 7.51

through the network in order to extract speaker embeddings
from i-vectors. Using these embeddings, we perform the trials
of the experiments with cosine scoring technique.

III. EXPERIMENTAL SETUP AND DATABASE

The experiments were performed on VoxCeleb-1 and
VoxCeleb-2 databases [27, 28] which contains 153,516 and
1,128,246 number of utterances, respectively. Both these
databases are further partitioned into development and test
sets. In this work, we have used the whole VoxCeleb-2
database (development and test) as unlabeled background
data to train the autoencoder. The supervised training was
carried out using the development partition of VoxCeleb-1
(the smaller database). VoxCeleb-1 is partitioned into 148,642
development and 4,874 test utterances, that belong to 1211
and 40 speakers, respectively. Thus, the classification layer
in our hybrid autoencoder-DNN consists of 1211 number of
neurons. From the test set of VoxCeleb-1, 37,720 experimental
trials were scored. Half of them are target trials while the other
half are non-target trials.

The development set of VoxCeleb-1 was used to train the
Universal Background Model (UBM), the Total Variability
(TV) matrix and the PLDA for the baseline i-vector/PLDA
system. 20 dimensional MFCC features, appended by delta
coefficients, were extracted for all the utterances. A 1024 com-
ponents UBM is trained to extract 400 dimensional i-vectors.
The PLDA for the i-vector/PLDA baseline was trained for 20
iterations and the number of eigenvoices was empirically set
to 200. The UBM/TV matrix training and i-vector extraction
process were carried out using Alize toolkit [29].
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Fig. 4. DET plots of the baseline and the proposed speaker embeddings.

The autoencoder used in this paper consist of 3 hidden
layers. The encoder and decoder parts are symmetrical and
thus the hidden layer 1 and 3 have 300 neurons each, while
hidden layer 2 consists of 200 neurons as shown in Fig. 2.
The input and output layers consist of 400 neurons each. In
the DNN, the dimension of speaker embeddings layer was
fixed to 600 while the classification layer consists of 1211
neurons. The autoencoder pre-training was carried out for 400
epochs. All the layers of the autoencoder used ReLU activation
function except the last layer which used linear activation. The
learning rate was set to 0.03 with a decay of 0.0002 and the
batch size was set to 100. The supervised DNN training was
carried out for 200 epochs using Adagrad optimizer with an
initial learning rate of 0.03 and a batch size of 100. Sigmoid
activations were used for all the layers.

IV. RESULTS

In the experiments it was observed that the autoencoder
pre-training has learned speaker independent information from
the large amount of unlabeled i-vectors. This information
was utilized by the DNN classifier as it was initialized with
the weights and biases of the autoencoder. This resulted in
a significant improvement in the convergence of the DNN
training. Fig. 3 shows the comparison of the DNN training
i.e., conventional DNN and both the cases of autoencoder
pre-trained DNN. In this paper, conventional DNN refers to
randomly initialized DNN. The plots were obtained using the
validation loss only. It can be seen that if the DNN was trained
using only the encoder, as discussed in Section II, we have a
slight improvement over randomly initialized DNN training.
However the full autoencoder initialization is the best choice
which helps in fast convergence of the training. For epochs
greater than 10, the absolute value of the validation loss is
reasonably lower as compared to the conventional training.

After extracting the desired speaker embeddings from i-
vectors using the proposed approach, we score the experimen-
tal trials using cosine scoring technique. However the baseline
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(a) Raw i-vectors (b) Conventional DNN speaker embeddings (c) Proposed speaker embeddings

Fig. 5. Comparison of the t-SNE Plots, between raw i-vectors, conventional and the proposed speaker embeddings. All the vectors were compressed to 2
dimensional space in order to generate the t-SNE plots.

i-vectors were scored using PLDA as well. Table I compares
the performance of our proposed speaker embeddings with the
conventional DNN speaker embeddings and i-vectors. Using
only the encoder part to train the DNN, is not the preferred
choice for our experiments. The full autoencoder initialization
has an advantage of learning efficient information from the
speaker labels as compared to the the only encoder case.
From the table it is clear that our proposed speaker embed-
dings has outperformed both the other systems. The relative
improvement between the proposed speaker embeddings and
i-vector/PLDA is 21.28%, in terms of EER. If we compare
the proposed speaker embeddings with the conventional DNN
speaker embeddings, the relative improvement is 12.47%.

Fig. 4 shows the Detection Error Trade-off (DET) curves of
our proposed approach and the other two approaches. We can
see that the conventional DNN speaker embeddings perform
worse than i-vector/PLDA, at low False Alarm (FA) regions.
However, the DET plot for the proposed speaker embeddings
shows better performance at all working regions.

Finally, in Fig. 5, we have shown the t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) plots for three different vec-
tor representation of speakers i.e., i-vectors, conventional DNN
speaker embeddings and the proposed speaker embeddings. t-
SNE is a dimensionality reduction technique to graphically
visualize [30] higher dimensional vectors. In order to see the
discriminative power of our proposed speaker embeddings,
we have compared the t-SNE plots with the other two ap-
proaches. The plots were obtained using the test partition of
the VoxCeleb-1 database. The dimensions of all the vectors
was reduced to 2 for plotting the t-SNE. It is clear from
the figure that our proposed speaker embeddings has the
highest discrimination power as compared to the other two.
The clusters generated are mostly pure and distinct. However,
for the conventional DNN speaker embeddings, some of the
clusters are overlapping with the others. For the baseline
system, raw i-vectors were used to obtain the plots. The
clusters formed for i-vectors are not very clear as compared
to the former two DNN based speaker embeddings.

V. CONCLUSIONS

In this paper we proposed the use of autoencoder pre-
training for DNN speaker embeddings in speaker verification
task. The requirements of large amount of labeled data has
put a constraint on deep learning approaches to this task. We
put an effort to tackle this problem. In practical scenarios
large amount of labeled data is not easily accessible. Thus
we make use of unlabeled data to minimize the impact of
lack of labeled data. In our proposed system, an autoencoder
is pre-trained on a large amount of unlabeled background
data which learns speaker independent information. Then a
Deep Neural Network (DNN) classifier was trained using a
relatively small labeled data, initialized with the parameters
of the pre-trained autoencoder. For the experiments, speaker
embeddings were extracted from i-vectors as the output of the
embeddings layer of this autoencoder-DNN hybrid network.
The evaluation was performed on the speaker verification
trials of VoxCeleb-1 database. The results have shown that by
using autoencoder pre-training for DNN, we gain a relative
improvement of 21% in terms of EER, over the baseline i-
vectors/PLDA system. Furthermore, we have observed that the
DNN training converged faster, compared to the conventional
(randomly initialized) dnn case.
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