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Abstract—The goal in verification tasks is to determine the
similarity of two samples or verifies if they belong to the same
category or not. In this paper, we propose a semi-supervised
embedding technique for verification tasks using deep neural
networks. The proposed model exploits the unlabeled data by
making the model robust to the perturbation of the input with
virtual adversarial training. It increases the generalization of the
embedding function and prevents overfitting which are crucial
in verification tasks. The proposed algorithm, named VerVAT,
is evaluated on several verification tasks and compared with
state-of-the-art algorithms. Experiments show the effectiveness of
VerVAT especially in cases where limited labeled data is available.

Index Terms—Verification Task, Semi-supervised Learning,
Deep Representation Learning, Virtual Adversarial Training.

I. INTRODUCTION

The task of estimating the similarity of two objects is called
verification task. It has important applications such as face ver-
ification [1], signature verification [2], and learning sentence
similarity [3]. Most of the suggested models for verification
tasks are based on embedding learning techniques. It makes
them applicable for some other tasks such as classification
problems in scenarios with a large number of classes and
limited or skewed number of samples for each class [3], [4].

Deep learning models have shown great and promising
performance in many applications recently [5] but most of
the successes are in supervised tasks where a large amount
of labeled data is available. Labeling data can be very ex-
pensive or not feasible in some cases while unlabeled data
are abundant for many problems. In such applications, semi-
supervised learning can be an effective solution. While some
works have been done on training neural networks in semi-
supervised setting for classification problems, to the best of
our knowledge, limited works have been done on deep semi-
supervised verification tasks. In [6], a semi-supervised model,
called SEVEN, is proposed which combines a supervised loss
with an unsupervised one to handle unlabeled data. It showed
promising results compared to the baselines. However the

unsupervised part of SEVEN is based on auto-encoders. One
of the drawbacks of auto-encoding approach is that the decoder
part doubles the size of the network.

In this paper, we propose a semi-supervised embedding
model for verification tasks. The proposed algorithm, named
VerVAT, benefits from Virtual Adversarial Training (VAT)
[7] to exploit the unlabeled data. Adversarial training may
refer to different categories of machine learning algorithms.
These algorithms are used for a variety of problems such
as Generative Adversarial Networks (GAN) [8], adversarial
examples [9], and adversarial loss optimization [10]. VAT is
adopted from the adversarial training [9] technique originally
proposed for increasing the robustness of neural networks
toward adversarial examples. VAT has shown promising per-
formance for semi-supervised classification tasks [11] where
the distributions of train and test data are similar. But to
the best of our knowledge, it has never been applied to
embedding learning problems where classes of the training and
test data can be different. We are the first to adopt this idea
and propose a semi-supervised learning model for verification
tasks through the introduction of an objective function based
on virtual adversarial training. The proposed objective function
is a combination of a discriminative part which imposes
separation between various classes and a VAT based part which
exploits the underlying structure of the unlabeled data. Virtual
adversarial loss also helps the model to avoid overfitting and
to have a smoother embedding function.

The proposed model can also be used in other tasks such
as extreme classification where there exists a large number of
classes in the order of thousands or millions. One common
example of such tasks is face recognition where there may
exist millions of classes with few samples for each class.
In such settings, traditional neural networks for classification
suffer from long tail problem and overfitting [12].

We have evaluated VerVAT on three different verification
tasks. In two of them, the training and test samples are drawn
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from disjoint classes which can not be handled easily by most
of the traditional classification techniques for neural networks.
In all of the experiments, the proposed algorithm achieves
better results in terms of accuracy compared to the baselines.
It shows the effectiveness of virtual adversarial training for
semi-supervised embedding learning.

II. PROBLEM FORMULATION

We define the training data as a set of pairs consisting of
two samples. The items of a pair can belong to the same class
to form a positive pair or belong to different classes to from
a negative pair. If the class information for at least one of the
items of a pair is missing or not available, the pair’s label is
considered as unknown. The training set is represented as D ={

(xi1, x
i
2)
}N
i=1

, where (xi1, x
i
2) is a pair of training samples.

xi1 ∈ Rm is the first item of the ith pair and xi2 ∈ Rm is
the second item. The total number of pairs is indicated by N .
The label set is defined as L = {yi|yi ∈ {p, n, u}}Li=1 where
p, n, and u denote the positive, negative and unknown label,
respectively.

We want to learn a parametric and highly nonlinear function
that can verify whether two samples are similar or not. To
be more specific, the goal of the model is to learn function
v(x1, x2; Θ) to predict the relation between x1 and x2. It is
defined based on the distance of x1 and x2 as

v(x1, x2; Θ) =

{
p if d(f(x1; Θ), f(x2; Θ)) ≤ τ
n if d(f(x1; Θ), f(x2; Θ)) > τ

(1)

where d(., .) is an arbitrary distance function. Function
f(x; Θ) is a highly nonlinear function parameterized by Θ
which maps a sample to a new space where distances can
get estimated by a simple distance function like Euclidean
or cosine distance. The threshold τ specifies the maximum
distance that samples of a positive pair are allowed to have
from each other. Samples farther than this threshold are
considered to be from different classes with negative relation.

III. PROPOSED ALGORITHM

A. Model Architecture

The overall architecture of the proposed model is illustrated
in Fig. 1. The input pair is given to two neural networks
denoted as F1 and F2 with shared weights and parameters
Θ like Siamese networks [2]. Siamese networks are widely
used in similarity learning [3], [4], [13], embedding learning
[14], [15], verification [2], [16], [17], and retrieval [18].

They should project the input samples to a new discrimi-
native space where samples with positive relation are close
to each other and samples with negative relation are far
from each other. As the weights of F1 and F2 are shared,
both subnetworks define the same nonlinear mapping func-
tion, denoted by f(.; Θ). To make the new representation to
have such a discriminative property, a layer is added at the
top of the networks F1 and F2 that calculates the distance
between the two input samples in the new space denoted by
d(., .). Function d can be an arbitrary distance metric such
as Euclidean or cosine distance in the new subspace. This

x1

x2

F1

F2

d

jv

jv

jd J

Fig. 1: The schematic representation of VerVAT. F1 and F2

are the neural networks with shared weights, and the circle
shapes denote the loss functions.

function can be considered as a metric distance function which
networks F1 and F2 are supposed to learn it. These networks
are ConvNets built with convolutional layers, max-pooling,
and a fully connected layer as the last layer.

B. Loss Function

We propose to impose two main characteristics on the
new subspace to be learned by networks F1 and F2. First
of all, the new subspace obtained from these two networks
should be discriminative so that samples from different classes
are separable easily. Samples from the same class should be
close to each other, and samples from different classes should
be far from each other. This property makes the similarity
prediction performed by function d(., .) easier. However, the
discriminative property is not enough for semi-supervised
settings where the relation of some pairs are not available.

To fully exploit the information of all data, we impose the
unsupervised constraint. Another challenge in training neural
networks is overfitting especially when the distribution of the
classes in the test and train are different [11]. To address this
problem, we propose to adopt the idea of virtual adversarial
training (VAT) to regularize the training process (will be
explained in detail in Section III-B2). Both properties are
imposed by a unified loss function as

J (X,Y ; Θ) = (1− α)JD(X,Y ; Θ)+

αJV(X; Θ) + β ‖Θ‖2 (2)

where JD(X,Y ; Θ) indicates the supervised loss for labeled
data, and JV(X; Θ) is the unsupervised loss for all data
which imposes the adversarial training loss on the learned
function. Parameter β controls the regularization term ‖Θ‖
which is imposed on all the weight parameters of the network.
Regularization to prevent overfitting is important especially
in cases where the distribution of train and test data are not
similar. Parameter α is the weighting parameter that controls
the trade-off between the supervised and unsupervised part of
the loss.

1) Discriminative Space: The discriminative part of the loss
function, JD(X,Y ; Θ) is estimated for the L labeled pairs as:

JD(X,Y ; Θ) =
∑

1≤i≤L

jd(xi1, x
i
2; Θ) (3)
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where jd(x1, x2) indicates the discriminative loss for the
pair (x1, x2) in the new subspace. It can be defined with a
contrastive loss function as:

jd(xi1, x
i
2; Θ) = I{yi = p}d(f(x1; Θ), f(x2; Θ))2

+ I{yi = n}max{0,m− d(f(x1; Θ), f(x2; Θ))}2 (4)

where I{.} is the identity function. Function d measures the
distance of two samples in the new space. We used Euclidean
distance as the distance function. It penalizes the distance
between positive samples and also the similarity between
negative ones. This loss pushes the positive samples close
to each other in the space while pushes negative samples
far from each other. It makes the new representation space
discriminative. Parameter m specifies a margin which prevents
the loss function to push negative pairs further than m.

2) Virtual Adversarial Training: In order to exploit the
information in the unlabeled data we adopt Virtual Adversarial
Training (VAT) [7] to our embedding learning model. VAT
is inspired from the defense techniques which are used to
increase the robustness of neural networks toward adversarial
attacks. It tries to minimize the change in the output of a neural
network when its input is perturbed locally. It regularizes
the embedding space and increases the generalization of the
learned subspace while there exists limited labeled data. VAT
has shown to be effective for semi-supervised learning [11].

The loss J (X,Y ; Θ) for all the pairs including unlabeled
and labeled samples is defined as:

Jv(X; θ) =
∑

1≤i≤N

2∑
j=1

jv(xij ; θ) (5)

where jv(xij ; θ) estimates the VAT loss for sample xij . It is
defined as the following to minimize the greatest change in
the embedding space for sample xij .

jv(xij ; θ) = g(f(xij ; θ), f(xij + radv; θ))

radv = arg max g(
r;‖r‖2<ε

f(xij ; θ), f(xij + r; θ)) (6)

where g is a non-negative function which measures the dis-
tance between its two inputs, and ε is a small positive num-
ber. We selected Euclidean distance function as the distance
function g. Vector radv is the adversarial perturbation which
specifies the direction in the input space which produces the
maximum difference in the embedding space. By minimizing
this loss function, the sensitivity of the output embedding
space to the input perturbation is minimized. There exists
no closed form to calculate the vector radv , but it can get
approximated by

radv = ε
g

‖g‖
(7)

where

g = ∇rd(f(xij ; θ), f(xij + r; θ))

r ∼ N(0,
ε√
Dx

I) (8)

Vector r is a random noise vector added to the input of the
neural networks to create the perturbation. It is drawn from a
normal distribution N . Dx is the dimension size of the inputs,
and I is an identity matrix with the dimension of Dx.

The gradient vector g can get computed by back-
propagation on the network. More details on this approxima-
tion can be found in [7].

The whole model is trained using backpropagation with
respect to the loss function in Equation 2. Given a set of
N pairs, we optimize the model by Adam [20] optimization
technique over shuffled mini-batches. Batch normalization [21]
technique is also applied after each convolutional layer to
normalize the output of each layer.

IV. EXPERIMENTS

A. Datasets

We evaluate the proposed algorithm on the following
datasets:

Labeled Faces in the Wild (LFW) [22]: It is a database
of face photographs designed for evaluating face verification
or recognition tasks. It contains 2200 pairs of face images
consisting of 1100 positive and 1100 negative pairs for verifi-
cation tasks. Positive pairs are images from the same person,
while negative pairs are from different persons. There are 500
positive and 500 negative pairs in the test set. Due to the
small size of the training data, we use 5-fold validation in the
validation process for estimating the best parameters.

BiosecurID-SONOF (SONOF) [23]: We use a subset of
this dataset comprising signatures collected from 132 users. It
contains 16 signatures for each user. All images are normalized
and resized to 80 × 80. Users are randomly divided into two
groups of 100 and 32 for the training and test purposes.

US Postal Service (USPS) [24]: USPS dataset contains
9298 handwritten digits automatically scanned from envelopes
by the US Postal Service. It has 10 classes. All images
are normalized 16 x 16 grayscale. We divided the samples
randomly into 7900/1398 for training and test. After the
pairing process, we will have 7900 and 1398 pairs for training,
and test. We used 5-fold cross-validation for estimating the
best values for the parameters. All images are resized to
64× 48.

Dataset LFW is originally built for verification tasks, and
its train and test samples are already in the form of positive
and negative pairs, but the rest are mostly used for image
classification tasks. We make these datasets in pairs so that
they can be used for verification. The pairing process is as
follows. First, we split the training data randomly into labeled
and unlabeled sets with the specified ratio. Then, each sample
gets paired with another sample randomly. The other sample
is selected from the same class with the probability of 0.5,
otherwise from a different class to have equal number of
positive and negative pairs. The pairs are selected from their
own corresponding set, labeled or unlabeled. Test or validation
samples are not divided into labeled and unlabeled sets like
training set, but they just get paired with a similar process. The
classes in the training and test samples are disjoint in SONOF
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TABLE I: Performance of different methods on LFW, SONOF, and USPS in terms of accuracy.

Dataset LFW SONOF USPS
# of labeled pairs 110 880 1760 All 160 640 1280 All 40 160 800 All
PCA - - - 64.5 - - - 67.6 - - - 70.9
DDML [1] 51.5 61.9 64.8 71.1 58.5 72.5 82.9 86.1 69.0 75.7 80.8 92.7
Pseudo-label [19] 52.0 53.9 57.9 70.1 53.8 63.2 80.5 84.5 70.1 57.9 78.3 93.3
Autoencoder-Siamese 55.1 63.5 64.2 66.0 61.9 70.4 78.8 82.1 72.2 77.6 82.9 93.0
SEVEN [6] 61.2 65.7 67.0 68.7 72.7 79.3 84.1 85.3 76.2 80.2 82.8 93.1
VerVAT 61.6 68.6 72.6 73.5 82.9 83.45 85.6 87.7 78.2 84.5 84.9 93.0

and LFW datasets, while in USPS dataset, classes are common
between the test and train.

B. Baselines

Handling new classes in the test data is a common case
in verification tasks, while it is a great challenge for most
of the traditional classification techniques based on neural
networks. Therefore, we adopted some of the deep semi-
supervised techniques to verification networks to be used as
our baselines.

Principle Component Analysis (PCA): It as an unsuper-
vised feature learning technique which does not need any label
information. The distance between samples after applying the
PCA transformation is considered as the similarity of two
samples. A threshold is selected for each dataset based on the
performance on the training data to find the relation between
two samples.

Pseudo-Label [19]: It is a semi-supervised approach for
training deep neural networks. It initially trains a supervised
model with the labeled data. Then in each epoch, it predicts
the labels of the unlabeled samples with the trained model, and
then adds the ones with high confidence to the labeled samples
to continue training. The model was proposed and evaluated
for classification tasks. We followed the same approach to train
a Siamese network [2].

Discriminative Deep Metric Learning (DDML) [1]: It
uses the architecture of Siamese networks [2] with a modified
version of the contrastive loss function. It is a supervised
approach and does not use unlabeled pairs.

Autoencoder-Siamese: It pre-trains an autoencoder in an
unsupervised manner. Then, its encoder part is fine-tuned with
labeled pairs in a Siamese network [2] structure.

SEVEN [6]: It is a model based on neural networks
specifically proposed for semi-supervised verification tasks.
This model used auto-encoding and generative models to
handle unlabeled data and prevent overfitting problem while
our algorithm benefits virtual adversarial training to exploit
the information in the unlabeled data.

C. Performance Evaluation

The performance of VerVAT and all baselines are presented
in Table I. The results are reported for a different number of
labeled pairs and the best accuracy for each case is depicted
in bold. The performance is reported in terms of accuracy
which is the number of pairs in the test set verified correctly
divided by the total number of pairs in the test data. The last
column of each section indicates the case where all the training

pairs have label information. As PCA is a fully unsupervised
method, no label information is used for this baseline, and just
one performance is reported for each dataset.

Most of the parameters of baselines are selected based
on the accuracy metric using cross-validation. USPS is di-
vided into training and validation sets because is has enough
samples, but LFW and SONOF are validated with 5-fold
validation. After finding the best values for parameters with
5-fold validation, the whole training data is used for training.

All the neural networks are trained for 250 epochs with
Adam [20] optimizer and the best model with the lowest
loss is selected as the final model. The pre-training phase of
training for both Pseudo-Label and Autoencoder-Siamese is
performed for 150 epochs. The batch size is set to 512 for all
the experiments. Margin parameter m is set to 1.

As can be seen, VerVAT outperforms other baselines in
terms of accuracy in cases with limited number of labeled
pairs. The difference in performance compared to other base-
lines is more significant for the lower number of labeled
pairs. It verifies empirically the effectiveness of the proposed
approach of addressing the problem of limited labeled data.

One of the drawbacks of SEVEN and Autoencoder-Siamese
is that they use autoencoders. Their encoders should incorpo-
rate most of the unnecessary detail of the image data into
the hidden representations so that the decoder can reconstruct
the original input. Such representations contain unnecessary
information for the goal task and can affect the performance
of the verification task while VerVAT benefits VAT to exploit
the unlabeled data and does not have this limitation.

V. CONCLUSION

We presented a deep verification network that learns a
distance metric for semi-supervised verification tasks whose
training samples consists of negative, positive or unknown
pairs. It exploits the unlabeled and labeled data in a joint
manner to learn a discriminative feature space. The proposed
model is the first verification model for semi-supervised
setting which benefits from virtual adversarial training to
learn a robust and smooth embedding space. The experiments
demonstrated the effectiveness of the proposed algorithm. It
outperforms state-of-the-art deep semi-supervised learning ap-
proaches for verification tasks on all the experimented datasets.
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