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Abstract—This paper focuses on the hand gesture recognition
problem, in which input is a multidimensional time series
signal acquired from a Leap Motion Sensor and output is a
predefined set of gestures. In the present work, we propose the
adoption of Convolutional Neural Networks (CNNs), either in
combination with a Long Short-Term Memory (LSTM) neural
network (i.e. CNN-LSTM), or standalone in a deep architecture
(i.e. dCNN) to automate feature learning and classification from
the raw input data. The learned features are considered as
the higher level abstract representation of low level raw time
series signals and are employed in a unified supervised learning
and classification model. The proposed CNN-LSTM and deep
CNN models demonstrate recognition rates of 94% on the Leap
Motion Hand Gestures for Interaction with 3D Virtual Music
Instruments dataset, which outperforms previously proposed
models of handcrafted and automated learned features on LSTM
networks.

Index Terms—gesture recognition, 3D musical instrument in-
teraction, CNN, LSTM, CNN-LSTM models

I. INTRODUCTION

Gesture recognition is a critical task for designing robust
interfaces that rely on non-haptic Human-Computer Interaction
(HCI) through body motion and gestures. This paper expands
on a previously presented method [1] for dynamic Hand Ges-
ture Recognition (HGR) [2], applied in the context of musical
gesture interaction. Such gestures are quite subtle [3] and this,
in combination with the required effectiveness on instant visual
and auditory feedback that should be taken into account when
designing gesture-driven virtual music instruments [4], make
this problem even more challenging.

Motion Capture (MoCap) sensors such as the Microsoft
Kinect and Leap Motion, have been widely employed in
studies related to music interaction [5]–[7], although focusing
only on reactive mappings between the sensorial data and the
control of musical parameters [8]. Recent advances in Deep
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Fig. 1: Filtering process with 1D-CNN used for automated
feature learning from the raw input data sequence.
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Fig. 2: CNN-LSTM Method: Feed the CNN-learned features
(see Figure 1) to a LSTM neural network for sequence learning
and with a fully connected layer for classification.

Neural Networks (DNNs) outperformed the Gaussian Mixture
Model/Hidden Markov Model (GMM/HMM) systems [9],
while bringing tremendous improvements in temporal pattern
recognition tasks. Furthermore, the prospects of deep Machine
Learning (ML) architectures still need to be studied in expres-
sive and real-time music interaction scenarios [10].

II. APPLICATION CONTEXT AND TWO NOVEL HAND
GESTURE RECOGNITION METHODOLOGIES

Among the most successful approaches in applying artifi-
cial neural networks principles for MoCap, incorporate the
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Fig. 3: dCNN Method: Consecutive application of convolution and max pooling operations followed by a fully connected layer
for classification.

development of methods that rely on Convolutional Neural
Networks (CNNs), which have proven effectiveness in filtering
raw sensor data. For instance, Devineau et al. introduced
a HGR system based on 1D–CNN architecture [11], that
receive input sequences of raw hand-skeletal joint positions,
achieving state-of-the-art performance on the DHG dataset
from the SHREC 2017 3D Shape Retrieval Contest. Also,
deep Convolutional Neural Networks (dCNNs) have been ap-
plied for Human Activity Recognition (HAR) from incoming
skeletal tracking data provided by depth sensors [12]. In
[13] Núñez et al. address HAR and HGR tasks by using a
combination of CNN and Long Short-Term Memory (LSTM)
recurrent networks on 3D data sequences obtained from full-
body and hand skeleton tracking data, where the CNN training
happens separately, adjusting the full CNN-LSTM architecture
in a second stage. Another example of combining convolu-
tional and recurrent architectures is [14], where an end-to-end
3DCNN-LSTM model is trained for recognizing gestures in
videos, while achieving close to state-of-the-art accuracy on
the ChaLearn dataset.

The purpose of the presented paper is to utilize the filtering
effectiveness of CNNs in modeling multidimensional data
sequences – in this case sensorial data. To this end, two novel
methods that incorporate CNNs are presented: one uses CNN
for feature learning and LSTM for sequence learning, while
the other method applies consecutive convolutions and max
pooling operations in a deep network. The proposed archi-
tectures are compared with a method presented recently [1]
on a dataset of musical hand gestures. Statistically significant
improvements are reported in the experimental results, reach-
ing an average accuracy of 94.32% and 94.44% respectively.
The remainder of the paper is organized as follows: Section II
describes the context of the application and the architecture
of the proposed gesture recognition methods; Section III
describes the experimental setup and presents the evaluation
results; and Section IV concludes the paper with reference to
future research.

The iMuSciCA1 project develops a STEAM (Science, Tech-

1http://www.imuscica.eu/

nology, Arts and Mathematics) platform that allows students
study scientific/engineering principles for constructing 3D
virtual musical instruments and afterwards interact with them
and generate music. Enabling intuitive and efficient music
performance with 3D instruments using the Leap Motion
Sensor is a vital aspect for engaging students in music creative
activities. Additionally, it is important to incorporate gestures
that are inspired by those used for interacting with real-world
instruments (e.g. plucking a string or tapping a drum or a
piano key), towards offering a realistic and physical-related
performance experience. The developed methodologies focus
on identifying quick gestures that rapidly trigger events on the
3D virtual musical instruments. These methods could also be
used for generic-purpose gesture recognition tasks as well.

The methods investigated in this paper leverages on the
ability of the CNNs, in their 1-D form, to capture relations
in sequences of events and extract meaningful features that
increase classification accuracy. In particular, we adopt CNNs
in two different architectures; the first deploys a convolution
layer for feature extraction which subsequently feed a LSTM
network for sequence learning and a fully connected layer
for classification in the gesture classes; the second is a deep
CNN architecture with several 1D convolutional layers in the
features dimension, followed by max pooling in the time
dimension. In both methods, the input corresponds to time
series of raw data coming from the Leap Motion Sensor within
an examined time window.

Figure 1 shows the 1D-CNN filtering process used in both
presented methodologies. The Leap Motion Sensor produces
time sequences of D measurements, corresponding to raw data
of positions, velocities and directions, among others, of the
fingers and the palm skeletons. Let us denote with T the time
window, expressed in number of frames, of the input sequence
of raw data. On each D-dimensional sequence of T length,
we employ N 1D convolutional filters of kernel size K and
sliding across frames for extracting one feature for each frame
using the ReLU activation function; we use zero padding for
preserving the frame count. Thereby, each filter produces a
single 1D time series, which are stacked in an N × T matrix.
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(a) Finger tapping (b) Palm tapping (c) Thumb plucking

(d) Index plucking (e) Middle plucking (f) Ring plucking (g) Pinky plucking

Fig. 4: Illustration of the considered instrumental gesture classes corresponding to the right hand as they were performed in the
(LMHGIf3DVMI) dataset [15]. The temporal evolution of the fingers’ motion trajectories follows the direction of the arrow.

It should be noted that the ReLU output for each time frame
is locally normalized across a neighborhood of n time frames
by following the 1D version of the normalization proposed in
the development of the ImageNet [16], i.e.

bix = aix/

k + α

min(T−1,i+n/2)∑
j=max(0,i−n/2)

(ajx)
2

β

,

where bix is the normalized activation value and aix is the
non-normalized one.

The first method examined, hereby referred to as CNN-
LSTM, is illustrated in Figure 2 and is similar to the one
presented in [1]. The similarity has to do with the fact that a
LSTM network is employed for learning sequential data; the
difference is that the method proposed herein employs a CNN
layer in place of the embedding layer for automated feature
representation, i.e. the CNN filtering depicted in Figure 1. The
output of the LSTM is used as input to a fully connected layer
with linear activation for classification among the targeted
classes. During training, the system learns the parameters of
the CNN filters, the parameters of the LSTMs as well as the
weights of the fully connected output layer.

The second method is illustrated in Figure 3 and it is
referred to as dCNN. This method is based on a deep CNN
architecture, with 4-layers applying consecutive 1D convolu-
tion and max pooling operations; this process begins with the
CNN-generated feature matrix and consecutively “bisects” it
four times. The outputs of the fourth layer are stacked to form
a vector of size N×T/16 which are feed to a fully connected
layer with linear activation for classification. During training,

the system learns the CNN filters in Figure 1 and the weights
at the fully connected output layer.

III. EXPERIMENTAL RESULTS

The evaluation experiments have been conducted on the
Leap Motion Hand Gestures for Interaction with 3D Vir-
tual Music Instruments (LMHGIf3DVMI) dataset which is
available on-line [15]. The LMHGIf3DVMI dataset includes
gesture sequences of the right hand from 10 participants (5
female and 5 male) for eight gesture classes using the Leap
Motion Sensor. The dataset includes in total 1019 samples,
with 10-15 samples for each gesture per participant. The
gesture classes are related to the fingers plucking and the
palm and index finger tapping, as depicted in Figure 4, in
addition to an ’unknown’ class, representing arbitrary hand
and finger movements. Each gesture is a time series with
maximum length of T = 75 frames, where each frame contains
D = 186 measurements as they are provided from the Leap
Motion SDK.

In all experiments we use N = 64 1D convolutional filters
with kernel size K = 2. The training parameters that produce
the reported results, include a learning rate of 0.001 using the
Adam optimisation algorithm [17] for the minimization of the
cross entropy cost function, with L2 regularisation of weights
set to 0.015, and gradient clipping in the range of [−1, 1]
during back propagation. Furthermore, we employ a dropout
rate of 0.5 on the LSTM cells as well as on the stacked features
of the dCNN. In addition, for the local normalization after
ReLU activation, we have set k = 1, α = 0.0002, β = 0.75
and the neighborhood “radius” n = 5. The LSTM network in
the CNN-LSTM methodology includes 128 LSTM cells.
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TABLE I: Recognition accuracy and run time of the CNN-LSTM and dCNN methods and comparison with the LSTM method.

Accuracy Run time (ms)
Fold No LSTM CNN-LSTM dCNN LSTM CNN-LSTM dCNN

0 90.91% 92.93% 95.96% 3.253 2.047 0.695
1 89.29% 95.54% 97.32% 2.547 2.475 0.614
2 94.50% 94.50% 94.50% 2.846 2.525 0.741
3 91.07% 93.75% 92.86% 3.179 2.761 0.427
4 94.59% 94.59% 98.20% 2.731 1.797 0.623
5 86.36% 99.09% 91.82% 2.611 1.886 0.735
6 93.69% 93.69% 93.69% 2.803 3.455 0.440
7 92.73% 90.00% 91.82% 2.602 1.852 0.916
8 92.59% 94.44% 95.37% 2.743 4.558 0.453
9 91.96% 94.64% 92.86% 2.547 3.155 0.695

Average 91.77% 94.32% 94.44% 2.786 2.651 0.633
Unbiased STD 2.40% 2.14% 2.12% 0.237 0.831 0.149

TABLE II: Confusion matrix resulted by the proposed dCNN method.

Predicted
RHIP RHIT RHMP RHPP RHPT RHRP RHTP RHUK

G
ro

un
d

Tr
ut

h

RHIP 95.77% 0.85% 0.83% 0.00% 0.00% 0.85% 0.00% 1.70%
RHIT 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
RHMP 2.34% 0.00% 86.80% 0.00% 0.00% 4.66% 0.80% 5.41%
RHPP 0.00% 0.00% 0.00% 96.19% 0.63% 1.27% 0.00% 1.91%
RHPT 0.00% 0.83% 0.81% 2.46% 94.15% 0.00% 0.00% 1.75%
RHRP 0.78% 0.00% 0.00% 1.57% 0.79% 95.26% 0.00% 1.61%
RHTP 0.00% 0.00% 0.00% 0.00% 0.00% 0.69% 97.93% 1.38%
RHUK 1.19% 1.88% 1.80% 0.59% 0.59% 3.08% 1.27% 89.60%

The experiments run on a computer with Intel Core i7 at
2.80 GHz processor and 16 GB RAM. For the implementation
of the methods we have used the TensorFlowTM framework. In
the experiments we have employed the 10-fold cross validation
of the LMHGIf3DVMI dataset. The training of all models has
been performed using batch sizes of 50 samples with 1000
training epochs. In the table I we present the recognition rates
and the run times on the testing sets of the 10-folds using
the proposed architectures of CNN-LSTM and dCNN, and
compare them with our previously developed method based
on a LSTM architecture [1].

One can observe in Table I that the average accuracy of
the proposed CNN-LSTM and dCNN methods, increases by
2.5% approximately, in comparison with the previous LSTM
method. This increase is statistically significant at the 5%
significance level across all folds, as indicated by a two-sided
Wilcoxon [18] rank sum test on the given accuracy distribu-
tions, rejecting the hypothesis that the accuracy distributions
between the LSTM results and the results from the CNN-
LSTM (p-value= 0.0232) and dCNN (p-value= 0.0373) come
from distributions from the same median. The differences
between the CNN-LSTM and dCNN methodologies are not
statistically significant (p-value= 0.8499). Furthermore, in the
same table one can see the average run time for recognizing
one gesture sample of 75 frames. The LSTM and CNN-
LSTM methods require approximately the same amount of
time, around 2.7 msecs. The dCNN method requires around
0.6 msecs, which is more than 4 times faster than the LSTM
and CNN-LSTM methods.

In Table II we present the confusion matrix resulted by
the experiments on the testing sets of the 10-folds of the
LMHGIf3DVMI dataset. One can observe that for the most

gesture classes there is little confusion with the other classes,
with the gesture classes of “unknown” (RHUK) and middle
finger plucking (RHMP) demonstrating the most misclas-
sifications. In particular, the gesture of the middle finger
plucking (RHMP) is confused with the gestures of index finger
plucking (RHIP), ring finger plucking (RHRP) and “unknown”
(RHUK). This is somehow expected as most people tend to
move downwards the index and ring fingers when perform the
middle finger plucking gesture. In addition, the “unknown”
(RHUK) is also expected to be confused with the other gesture
classes as it contains all kind of gestures including the finger
plucking gestures.

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented two novel methods based on
deep neural networks for hand gesture recognition on data
obtained from the Leap Motion Sensor. Experimental results
were extracted from performing gesture recognition on a
dataset of eight hand gestures classes. The proposed methods
outperformed an LSTM-based method that has been presented
in previous work. The CNN-LSTM method is similar to the
previously developed LSTM method, with the difference of
using a 1D convolutional layer instead of a fully connected
one for feature embedding, resulting to a significant increase of
the recognition accuracy. Similarly, the dCNN architecture has
also exhibited statistically significant improvement of the ges-
ture recognition results in comparison with the LSTM method,
but no statistically significant difference in comparison with
the CNN-LSTM method. However, the computation time of
the dCNN method is significantly smaller compared to the
LSTM and CNN-LSTM methods.
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Future research will incorporate testing all three methods
in a real-time setting, where sensorial data frames will be
buffered into an integrated system for real-time gesture inter-
action. This study will not only reveal the actual performances
in a real-time framework, but it will also indicate whether the
computation time superiority of the dCNN method is indeed
crucial. Another aspect that will be studied in future work
is to exclude the “no gesture” class from the workflow and
allow classification decisions on the basis of the classification
probabilities exceeding a certain threshold so that the system
is “confident enough” of its decision.
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