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Abstract—In this paper, we analyze by means of simulations
the applicability of random Gabor multipliers as compressive
measurements. In particular, we consider signals that are sparse
with respect to Fourier or Gabor dictionaries, i.e., signals that
are sparse in frequency or time-frequency domains. This work
is an extension of our earlier contribution, where we introduced
random Gabor multipliers to compress signals that are sparse
in time domain. As reconstruction technique we employ the
well known ℓ1–minimization procedure. Finally, we evaluate
the compression performance of random Gabor multipliers by
applying them to a specific audio signal with inherent time-
frequency sparsity. Our results highlight the strong potential
of random Gabor multipliers for present and future real-world
audio applications.

Index Terms—Compressive Sensing, Gabor Multiplier, Ran-
dom Matrix, Dictionary, Audio

I. INTRODUCTION

Compressive Sensing (CS) is a methodology to acquire and

reconstruct signals with a rate lower than what is stated by the

classical sampling theorem under the prior condition that the

signals are S-sparse or compressible in some domain [1]–[3].

S-sparse means that the signal contains at most S non-zero

entries whereas compressibility imposes a sufficiently strong

energy decay of the entries.

One of the major challenges in CS is the choice of the

measurement matrices, which could be either random [4] or

deterministic [5]. On one hand, deterministic matrices are

preferred as they allow for fast implementations with reduced

storage requirements for practical purposes. But on the other

hand, the usage of deterministic matrices is often avoided as

deterministic matrix constructions are known to suffer from

the square-root bottleneck [6]. Therefore, recent studies in this

field have been focused on structured random measurement

matrices. These matrices are optimal in the sense that they

have enough structure to facilitate fast computations while

still being sufficiently random to provide reliable measure-

ments for reconstruction. Some instances of such structured

random matrices are random partial Fourier matrices [2],

[3], [7], partial random circulant matrices (subsampled ran-

dom convolutions) [8]–[12], time-frequency structured random

matrices [11], [13], [14], and, very recently, random Gabor

multiplier matrices [15]. In [15], it was theoretically shown

that random Gabor multipliers [16] exhibit essentially optimal

compression capabilities of time-domain sparse signals and

that ℓ1–minimization is very efficient in reconstructing them

in practice.

In the present work, we will concentrate on signals that have

sparse representations in domains other than time. To illustrate

the practical importance of our results, we apply our methods

to a real-world audio signal. It is demonstrated that random

Gabor multipliers can be used to exploit the inherent time-

frequency sparsity of the signal in order to reduce the number

of measurements.

A. Notation

In the following, we will denote matrices with uppercase

letters, such as M, and column vectors as lowercase letters,

such as m. We will write variables as lowercase letters, e.g., s
and constants as uppercase letters, e.g., S. The superscripts T

and ∗ will denote transpose and conjugate transpose, respec-

tively, overlined scalars will be complex conjugated, and 〈·, ·〉
will denote the inner product of two vectors.

For a vector x = [x0, x1, · · · , xL−1]
T, the ℓ0 “norm”

is defined as ‖x‖0 = #{l : xl 6= 0} and the ℓ1 norm is

defined as ‖x‖1 =
∑L−1

l=0

∣

∣xl

∣

∣. With [ · ]
L
, [ · mod L] we

abbreviate the modulo-L operation due to circular indexing.

The rest of the paper will be organized as follows: In Section

II, we will briefly recall the basic idea of compressed sensing.

In Section III, we will shortly describe the concept of Gabor

multipliers. Section IV will contain results from our numerical

experiments and Section V will be devoted to concluding

remarks.

II. COMPRESSIVE SENSING IN A NUTSHELL

Let us start by considering a signal vector x ∈ C
L, a

dictionary Φ ∈ C
L×Q, and assume that the signal x can be

expressed as

x = Φα, (1)

where α ∈ C
Q is the coefficient vector.

The goal of CS is to recover x from a small number of

linear measurements y ∈ C
K (K ≪ L) given as,

y = Ψx, (2)

where Ψ ∈ C
K×L is the measurement matrix.

Hence, by (1) and (2),

y = ΨΦα, = Aα (3)

where A will be referred to as sensing matrix.

Generally, it is impossible to uniquely recover x from

y without additional constraints because (2) represents an

underdetermined system of equations and an infinite number
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of solutions exist. However, the scenario is quite different, if x
has a sparse representation in the dictionary Φ, i.e., ‖α‖0 ≤ S
[17]. Then, to reconstruct x from y, we can apply the following

two steps.

In the first step, we aim to recover the sparse coefficient

vector α. Theoretically, this can be done by solving the ℓ0–

minimization problem expressed as [18],

α̂ = argmin
α

‖α‖0 subject to y = Aα. (4)

However, since ℓ0–minimization is an NP-hard problem, its

convex relaxation, ℓ1–minimization, is solved instead [7], [19],

[20],

α̂ = argmin
α

‖α‖1 subject to y = Aα. (5)

The second step simply consists of the computation of x̂
from α̂ according to (1), i.e.,

x̂ = Φα̂. (6)

Note that the choice of the dictionary Φ directly influences

the sparsity of the coefficient vector, which then automatically

impacts the number of measurements required to reconstruct

the signal. Furthermore, success of (5) is known to rely on

properties of A, and again, via (3), on Φ. This means, that the

observed reconstruction performance will crucially depend on

the chosen sparse representation.

III. COMPRESSED SENSING USING RANDOM GABOR

MULTIPLIERS

In this section, we will recall the definitions of Gabor

systems as well as of Gabor multipliers and we will describe

how to use random Gabor multipliers as CS measurement

matrices.

A. Gabor Systems

A discrete Gabor system [21] (γ, a, b) is defined as a

collection of time-frequency shifts of the vector γ ∈ R
L

expressed as,

γn,m[l] , γ[l − na]
L
e2πimbl/L, l ∈ {0, . . . , L−1}, (7)

where a, b ∈ {0, . . . , L − 1} denote time and frequency

parameters, respectively, and n ∈ {0, . . . , N−1} chosen such

that N = L/a ∈ N and m ∈ {0, . . . ,M−1} chosen such that

M = L/b ∈ N denote the time and frequency shift indices,

respectively. In general, the values of the parameters a and b
are chosen to be greater than 1. But when a = b = 1, then (7)

is referred to as full Gabor system.

The system (γ, a, b) according to (7) contains P = MN
elements. Note that the redundancy R of this system is defined

as R = P/L = MN/L = M/a.

B. Gabor Analysis and Synthesis Operator

We can associate two operators to a Gabor system (γ, a, b).
Let Aγ : C

L → C
L/b×L/a denote the Gabor analysis

operator1 that computes for any given signal x ∈ C
L,

cm,n =

L−1
∑

l=0

x[l]γ[l − na]
L
e−2πimbl/L, (8)

where m ∈ {0, . . . , L/b−1} and n ∈ {0, . . . , L/a−1}.

Furthermore, let Sγ : CL/b×L/a → C
L denote the Gabor

synthesis operator that computes a signal z ∈ C
L according

to

z[l] =

N−1
∑

n=0

M−1
∑

m=0

cm,nγ[l − na]
L
e2πimbl/L, (9)

where l ∈ {0, . . . , L−1}.

C. Gabor Multipliers

Let us consider two Gabor systems (g, ag, bg) and

(h, ah, bh), where g ∈ R
L and h ∈ R

K , and assume that both

systems contain the same number P of elements. Clearly,

• redundancy of (g, ag, bg) is Rg = P/L = L/agbg,

• redundancy of (h, ah, bh) is Rh = P/K = K/ahbh.

A Gabor multiplier [16] is defined as the linear operator2

taking the form: Gabor analysis with respect to (g, ag, bg),
proceeded by point-wise multiplication with the so-called

symbol, and then followed by Gabor synthesis with respect

to (h, ah, bh).
Hence, the Gabor multiplier operator Ms,h,g : CL → C

K

can be expressed as,

y[k] =

N−1
∑

n=0

M−1
∑

m=0

sm,ncm,nh[k − nah]Ke2πimbhk/K , (10)

where k ∈ {0, . . . ,K−1}, sm,n denotes the symbol and, cf.

(8),

cm,n =

L−1
∑

l=0

x[l]g[l − nag]Le
−2πimbgl/L. (11)

A graphical illustration of the structure of a Gabor multiplier

is depicted in Fig. 1.

Gabor
Analsyis

Gabor
Synthesis

x

s

y

Fig. 1: Structure of a Gabor multiplier: x ∈ C
L, s ∈ C

P ,

y ∈ C
K , K ≪ L < P .

Usually, Gabor multipliers are limited to the case where

K = L, ag = ah, and bg = bh as this setting preserves the

time-frequency structure induced by the two Gabor systems.

But in this work, we are particularly interested in obtaining

an output measurement vector y which is smaller in size than

the input vector x. Hence, we will strictly restrict ourselves

to the case, K ≪ L.

1Also referred to as Discrete Gabor Transform (DGT) [22].
2Such an operator can also be defined for other systems [23].
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D. Random Gabor Multipliers as Measurement Matrices

The linear map from the input vector x ∈ C
L to the

measurement vector y ∈ C
K given by (10) and (11) can be

rewritten in the form,

y = ShDsAgx = Ψx (12)

with the K×L-dimensional measurement matrix Ψ being the

product of three matrices Sh, Ds, and Ag, where

• Sh ∈ C
K×P is the matrix representation of the synthesis

operator associated to the Gabor system (h, ah, bh),

• Ag ∈ C
P×L is the matrix representation of the analysis

operator associated to the Gabor system (g, ag, bg), and

• Ds ∈ C
P×P is the diagonal matrix containing the

elements of symbol vector s ∈ C
P on its diagonal.

Note that the symbol vector s ∈ C
P is obtained by stacking

the columns of sm,n in a vector. With the notation introduced

in (7), we have

Sh =









...
...

...
...

h0,0 · · · h0,M−1 h1,0 · · · hN−1,M−1

...
...

...
...









and

Ag =





















· · · g∗0,0 · · ·
...

· · · g∗0,M−1 · · ·
· · · g∗1,0 · · ·

...

· · · g∗N−1,M−1 · · ·





















.

We will consider two different stochastic models for Gabor

multipliers. In the first model, which we denote by RGM-I,

the windows g and h are both chosen as sampled and peri-

odized Gaussian deterministic windows, whereas the symbol

is assumed to be random with i.i.d. sm,n ∼ CN (0, 1) drawn

from the standard complex Gaussian distribution. In the second

model, denoted by RGM-II, the symbol is distributed as in

RGM-I but both windows g and h are chosen at random as

well. More specifically, the elements of the windows are i.i.d.

g[l], h[k] ∼ N (0, 1) drawn from the standard real Gaussian

distribution. In Fig. 2 (a) and (b) we depict a realization of

a measurement matrix Ψ ∈ C
128×256 for the two stochastic

models RGM-I and RGM-II. The exact parameters of the

involved Gabor systems are specified in the second row of

Table I. For comparison, cf. Fig. 2 (c), we also show a real-

ization of a measurement matrix, for which each entry is i.i.d.

and drawn from the standard complex Gaussian distribution

CN (0, 1). Note that this Fully Gaussian (FG) stochastic model

corresponds to a completely unstructured random matrix.

As can be seen, the measurement matrix Ψ given by a Gabor

multiplier is quite sparse for model RGM-I but for model

RGM-II the Gabor multiplier matrix becomes more dense,

almost resembling the FG measurement matrix. This is re-

markable because the FG model involves 2 ·128 ·256 = 65536
real Gaussian random variables, whereas the RGM-II model

only involves 128 + 256 + 2 · 512 = 1408 (the RGM-I model

even only 1024) real Gaussian random variables.

(a) (b)

(c)

Fig. 2: Realizations of measurement matrices for various

stochastic models (real parts, properly scaled): (a) RGM-I, (b)

RGM-II, and (c) Fully Gaussian.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of a random

Gabor multiplier as a measurement matrix. For this purpose,

we carry out simulations with synthetic signals that are sparse

with respect to Fourier or Gabor dictionaries. We will use the

FG model as a benchmark for comparison. Finally, we will

apply a random Gabor multiplier to an audio signal. All the

simulations are implemented in MATLAB using the LTFAT

toolbox [22], [24].

A. Sparse Signal in Frequency Domain

For our first simulation, we choose an input signal x
of length L = 256 that is sparse in the Fourier domain,

i.e., x = Φα, where the sparsifying dictionary Φ is a

256 × 256 discrete Fourier transform (DFT) matrix. The

transform coefficient vector α of length 256 is S-sparse with

S = {10, 20, 30, 40, 50, 60}. The values of the non-zero

coefficients are assumed to be i.i.d. and are drawn from the

standard complex Gaussian distribution CN (0, 1). The support

sets of cardinality S are chosen uniformly random.

B. Sparse Signal in Time-Frequency (TF) Domain

For our second simulation, we choose an input signal x
of length L = 256 that is sparse in the TF domain, i.e.

x = Φα, where Φ of dimension 256 × 512 is a Gabor

synthesis matrix generated using the Hann window with

parameters a = 8 and b = 16. Just like above, we generate

the S-sparse transform coefficient vector α of length 512 for

S = {10, 20, 30, 40, 50, 60}. Again, the values of the non-zero

coefficients are assumed to be i.i.d. and are drawn from

the standard complex Gaussian distribution CN (0, 1). The
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support sets of cardinality S are chosen uniformly random.

For the two scenarios specified in Sections IV-A and IV-B,

we obtain the measurement vector y using y = Ψx, where

Ψ is a realization of a random Gabor multiplier matrix,

which is chosen according to the stochastic models RGM-

I and RGM-II defined in Section III-D. We recover the

coefficient vector α̂ from the measurement vector y by solving

the ℓ1–minimization problem using the SeDuMi solver in

CVX software [25] and then reconstruct x̂ using (6). For

each value of sparsity S, we compute 500 realizations of x
and plot the performance curve depicting the success rate

for the two random Gabor multipliers specified in Table I.

Here, reconstruction is declared as successful if the relative

reconstruction error, ‖x− x̂‖/‖x‖ is smaller than 10−5.

Gabor system (h, ah, bh) Gabor system (g, ag, bg)

K = 64
ah = 4 bh = 2

Rh = 8 P = 512

L = 256
ag = 16 bg = 8
Rg = 2 P = 512

K = 128
ah = 16 bh = 2
Rh = 4 P = 512

L = 256
ag = 32 bg = 4
Rg = 2 P = 512

TABLE I: Parameters of Gabor multipliers.
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Fig. 3: Sparsity vs Success Rate for Φ = DFT matrix:

(a) RGM-I and (b) RGM-II.

0 20 40 60

0

0.2

0.4

0.6

0.8

1

(a)

0 20 40 60

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 4: Sparsity vs Success Rate for Φ = Gabor synthesis

matrix: (a) RGM-I and (b) RGM-II.

Note that the realizations of the Gabor multiplier matrices

are drawn only once and remain fixed throughout all 500

realizations of x and all sparsity values S. Figure 3 depicts

the result for the DFT dictionary, whereas Figure 4 shows the

result for the Gabor dictionary.

It can be observed that random Gabor multipliers have

excellent compression capabilities of signals that are sparse in

frequency or TF domains. For K = 64 measurements, which

corresponds to a compression ratio of 1 : 4, the performance

of RGM-I, RGM-II, and FG is very similar for all considered

scenarios. For K = 128 measurements (compression ratio

of 1 : 2) we notice a performance degradation of RGM-

I compared with RGM-II. Hence, a random choice of the

windows of the Gabor multiplier improves its applicability as

CS measurement matrix. Even more, we see that RGM-II and

FG have similar performance although RGM-II corresponds

to a highly structured random matrix, whereas FG is fully

unstructured. Note that the involved randomness in the RGM-

II model is only a small fraction of the randomness in the

FG model: RGM-II involves 128 + 256 + 2 · 512 = 1408 real

Gaussian random variables, whereas FG involves 2·128·256 =
65536 real Gaussian random variables (for K = 128).

C. Approximately Sparse Signal in Time-Frequency Domain
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10000
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Fig. 5: Reconstruction of the DGT magnitude of the audio sig-

nal “Glockenspiel”: original signal (top), reconstructed signal

(middle), and difference between original and reconstructed

signal (bottom).

In this simulation, we choose the (in)famous “Glockenspiel”

[22] as our input audio signal. This signal is sampled at 22.05

kHz and consists of 131072 samples. Since the audio signal

is real-valued, we aim to recover only the DGT coefficients

of positive frequencies instead of the full DGT coefficients.

This means that, for x = Φα, Φ is a Gabor synthesis matrix

that only computes positive frequency DGT coefficients. The

chosen DGT parameters are a = 512 and b = 64 with a Hann

window. Hence, the dimension of Φ is 131072 × 262400. As

shown in Fig. 5, this signal is approximately sparse in the TF

domain. Similar to the previous two examples, we obtain the
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measurement vector y using y = Ψx, where Ψ is a realization

of a random Gabor multiplier matrix based on the stochastic

model RGM-II. Table II summarizes the parameters used in

the Gabor systems.

Gabor system; (h, ah, bh) Gabor system; (g, ag, bg)

K = 65536
ah = 128 bh = 32

Rh = 16 P = 524800

L = 131072
ag = 256 bg = 64

Rg = 8 P = 524800

TABLE II: Parameters of Gabor multiplier.

Since, this is a large scale problem we employ SPG-l1

software [26] to recover the TF coefficients and apply (6) to

reconstruct the original audio signal. Note that a comparison

with the FG model is computationally infeasible3 since this

would require to generate and store a realization Ψ of an i.i.d.

Gaussian matrix of size 65536 × 131072. It can be seen from

Fig. 5 that the difference between original and reconstructed

signal is very small.

V. CONCLUSION

We demonstrated that random Gabor multipliers can be

efficiently used for compressive sampling of signals that are

sparse with respect to Fourier or Gabor dictionaries. We inves-

tigated two different stochastic models for Gabor multipliers

and showed that the resulting measurement matrices have

(almost) similar compression performance as i.i.d. Gaussian

random measurement matrices. This is remarkable because

the involved randomness is only a small fraction compared

with the FG model. Furthermore, we showed that random

Gabor multipliers exhibit excellent compression performance

not only for ideally sparse but also for approximately sparse

(compressible) signals. This is important because real-world

signals such as audio signals are rarely ideally sparse. Our

experiments indicated that for audio signals a compression

ratio of 1 : 2 is easily possible without notable differences.

Therefore, we believe that random Gabor multipliers will be

a very useful tool for present and future audio applications.
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