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Abstract—The human visual system performs a dynamic
process of scanning the scene by rapid eye movements and
fixations, yielding a visual scanpath. We propose an approach
to generate artificial visual scanpaths for natural images. A
convolutional long short term memory (LSTM) neural network
is employed, which learns the mapping of image features to eye
fixations by modeling the sequential dependencies of the fixations
in a scanpath. A novel approach of hidden Markov model
(HMM) based data augmentation is presented that increases the
number of available image-specific input-output pairs to train
the LSTM appropriately. Both the HMM and the LSTM are
designed to be consistent with existing knowledge on saccadic
eye movements. Experimental results on a standard eye-tracking
dataset demonstrate that the proposed approach does better than
the state-of-the-art and generates realistic visual scanpath data.

Index Terms—Visual scanpath prediction, eye tracking, fixa-
tions, saccades, Convolutional LSTM

I. INTRODUCTION

Eye movements are very important attributes of the human
visual system (HVS) for the perception of a scene in many
tasks like driving or looking at a picture. One of the main
aspects involved in visual perception of humans is a dynamic
process where the eye moves to scan the scene. The human
visual system has high visual acuity in a small region, the
fovea, and hence our eyes process only a small central region
in detail and the resolution drops rapidly towards the periphery.
So to build a detailed representation of a scene, the HVS
performs a dynamic process of scanning the scene by rapid eye
movement called saccades. To gather more visual information
HVS makes a series of such saccadic eye movements between
fixation points which results in a human visual scanpath.

In computer vision, a field related to visual scanpath ex-
plored extensively is visual saliency prediction. A saliency
map for an image/frame is predicted that signifies the impor-
tance of the entities present [1], [2], and is directly related to
human fixation density. However, only a few approaches have
been proposed to predict visual scanpaths. In one of the earliest
work [3] involving saliency-based visual attention computa-
tion, Itti et al. modeled the visual scanpath as dynamical shifts
of the focus of attention by employing winner-take-all (WTA)
and inhibition of return (IoR) policies on the predicted saliency
map. To predict eye movement trajectories Komogorestev et
al. [4] introduced a mathematical model of the human eye in
the form of Kalman filter which uses anatomical properties
of HVS. Wang et al. [5] proposed a computational model
to simulate saccadic scanpath on natural images. The model

considered three factors namely reference sensory responses,
visual working memory, which guide the eye movements and
fovea-periphery resolution discrepancy. One of the earliest
learning-based method for estimating human scanpaths is
proposed by Liu et al. [6]. They also considered three different
factors, namely low-level feature saliency, semantic content,
and spatial position with Levy flight model to account for
spatial position and hidden Markov modeling (HMM) to learn
the influence of semantic content. In [7], Sun et al. presented a
statistical framework which models the saccadic behavior and
visual saliency based on super-Gaussian component (SGC)
analysis. Wang et al. [8] proposed a bio-inspired method
for fixation and scanpath prediction in which a probability
map based on the foveated image saliency is used with two
factors namely the saccadic biases of gaze shifts and the IoR
policy. Another learning based method proposed by Jiang et
al. [9] used least-squares policy iteration (LSPI) to a visual
exploration policy from the recorded human eye tracking data.
The method allows the integration of low-level and high-level
cues in the learning process by considering various stages of
visual exploration. In recent work [10], Xia et al. proposed an
iterative scene representation learning framework using deep
autoencoder in which the saccade is considered as an iterative
process of finding the most uncertain area in the scene.
Another learning framework [11] is presented by Ngo et al. to
model the sequences with a recurrent neural network (RNN)
using localized features from a pretrained convolutional neural
network (CNN). They trained the model on free-viewing eye
tracking data by maximizing the likelihood of a fixation
sequence given an image.

In this paper, we propose a convolutional LSTM based
human visual scanpath predictor. We use long short term
memory (LSTM) neural network to predict fixation sequences
based on the image features extracted by a pretrained CNN.
The proposed method is based on existing knowledge about
saccadic eye movements during free-viewing, and has advan-
tages over the existing methods in terms of model complexity
and performance. Due to the end-to-end training, our method
does not assume any prior knowledge about the data, and
feature extraction through CNN in a single pass makes it
simpler by eliminating feature set collection and selection
process. Most importantly, unlike previous works, we employ
a novel data augmentation procedure by increasing the number
of available training pairs through image-specific fixation
sequence modeling. For this, we consider a hidden Markov
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Fig. 1. Convolutional LSTM based visual scanpath Predictor trained on human and HMM generated visual scanpaths. A fixation point location prediction
happens based on previous fixation point and abstract feature of the image.

model (HMM) based sequence generation, in coherence with
existing knowledge on saccadic eye movements. Quantitative
and qualitative experimental results are given to demonstrate
the effectiveness of our proposed method.

II. PROPOSED APPROACH

The proposed HMM-based convolutional LSTM visual
scanpath prediction is illustrated in Fig.1. From a given image
the pretrained CNN extracts features, which is used by the
LSTM network to predict the visual scanpath by learning
the mapping of image features to fixation locations along
with their dependencies on previous fixation locations. Since
training credible LSTM network requires a large number of
training samples (known input-output pair), we use HMM to
generate synthetic image-specific fixation sequences.

A. Data augmentation using HMM

It is well accepted [12] that during saccadic eye movement,
the fixation at a location depends on the content at that
location and the previous fixation location. This dependence of
the current fixation location on the previous is in agreement
with Markovian property involved in HMM-based sequence
modeling. Hence, we use HMM to learn a model of the
fixation sequences in an image and then use the learned
HMM to generate more such fixation sequences for that
image. This results in an increase in the number of input-
output pairs available to train our LSTM network, which is
designed to predict fixation locations in any arbitrary image
based on image content and previous fixation location (See
Section II-D). This HMM-based increase in training pairs can
be envisioned as a data augmentation process, which boosts
the network’s invariance to discrepancies in image features at
different locations present at the same sample t of multiple
fixation sequences.

Further, modeling an image-specific sequence of eye fix-
ations using HMM allows its hidden states to represent the
latent image region selection criterion, while the observable
outputs are image locations. An HMM with N hidden states

(S1, S2, S3..., SN ) is comprised of three parameters λ =

(π,Θ,Φ), where π ∈ RN

is a vector representing the prior
probability distribution of the hidden states, Θ ∈ RN×N is
the transition matrix consisting of probabilities of transition
from one state to other, Φ ∈ RN×K is the emission matrix
with probability values of observations given a certain state
with K denoting the number of emissions.

The HMM model for an image can be trained by using
multiple human visual scanpaths in that image, represented
by {On | n = 1, 2..M}, where On =

{
o1

(n), ..., oTn
(n)
}

is
the nth training sample (i.e., a human visual scanpath from
one subject in an image), and M is the total number of
subjects in the image, Tn is the length of a scanpath of the
nth subject. First, we initiate a model as λ = (π,Θ,Φ) for
an image and then use that to calculate the re-estimation of
the HMM parameters by employing Baum-Welch [13] method
to improve the probability of an On being observed from the
model. So we trained individual HMM for an image based on
the available visual scanpaths on that image and then used the
model to generate artificial scanpaths for that image.

B. Feature extraction through CNN

The recent works [14] [15] showed that Convolutional Neu-
ral Network (CNN) is capable of learning the features which
represent the semantics in the images for object detection.
Moreover, many works have shown that pretrained CNN on
ImageNet dataset [16] for image classification can be used as
fixed feature extractor by removing the later fully-connected
layers for many tasks like object classification, detection, and
segmentation. We have used the filter responses of the second
last layer of the 152-layer ResNet of [17] as the image feature
set, which we represent as {F}. The feature set {F} of an
image is converted into another feature set {ϑ0} with reduced
dimension as required by our LSTM network using a fully-
connected linear layer φ0. We feed this feature set {ϑ0} of
an image to LSTM network at the first time instance. Then
another fully-connected layer φ1 is used on ϑ0 to produce
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abstract image feature ϑ1, which is fed into the LSTM at the
later time instances along with the fixation locations (ground
truth in training phase and previous predicted in testing phase).
Representation Xt of fixation locations obtained by passing
them through a fully-connected linear layer ω are concatenated
with ϑ1.

C. Spatial quantization of image

As fixation location in the visual scanpath represents the
screen location where the point-of-gaze rests within a range
of visual angle for at least a fixed period [18], the fixation
location represents a small region of an image. So first, we
resize all the images into 512×512 pixels and then divide the
whole image into 1024 small regions {Li} each of size 16x16
pixels. Then, all the fixation locations are binned into one of
the small regions and represented by the center of the region.
Hence, we can represent the visual scanpath as a sequence
of these small regions corresponding to its fixation locations.
Each eye-fixation regions in such a sequence correspond to
an entry in our dictionary set γ, which also contain a start
and end token for the sequence. Then each of the element
in the dictionary is embedded into a 256-dimensional feature
vector by a single layer perceptron ω which is learned with
the training of the whole model.

D. Convolutional LSTM based Visual Scanpath Predictor

The human eye makes a sequence of saccades between
fixations to perceive an image. The first eye fixation on the
image depends on the features in whole image, whereas the
next fixations are driven by the image features and the previous
fixation [12]. We have designed our approach based on this
fact, which we discuss here in detail.

Long Short-term Memory (LSTM) [19] is one of the most
popular deep learning algorithm which learns the sequential
information in the data. LSTM is developed to solve the
vanishing and exploding gradient problem of RNN [20] by
including memory blocks in its recurrent connections. For a
given sequence input as xt, t ∈ T (where T is the length of
sequence), an LSTM unit recursively calculates the output ot
and hidden state ht at each time step until T by following:

it = σ (Wxixt +Whiht−1 + bi) ,
ft = σ (Wxfxt +Whfht−1 + bf ) ,
ot = σ (Wxoxt +Whoht−1 + bo) ,
gt = Wxgxt +Whght−1 + bg,
ct = ft � ct−1 + it � φ (gt)

ht = ot � φ (ct)

(1)

where xt and ht are the input and hidden states for the LSTM
unit at the tth time step, it, ft, ot, gt, ct represents the input
gate, forget gate, output gate, gate gate, and memory cell
respectively. σ is the sigmoid function, and φ is the hyperbolic
tangent function.

The features of an image extracted by the CNN as discussed
in section II-B, are represented by {ϑ0} and fed into LSTM
at first time instant for the visual scanpath prediction on the
image. As the hidden state ht ∈ Rn in LSTM varies over

time t, the tth fixation location (Lt) in the visual scanpath
is selected from the dictionary γ according to the probability
distribution over dictionary

(
pt ∈ R|γ|

)
generated by a fully

connected layer with softmax non-linearity connected to the
hidden state ht of LSTM. The feature vector Xt+1 of next
fixation location Lt+1 concatenated with more abstract image
feature ϑ1 will be given as an input xt+1 ∈ R|m| into LSTM
network in the next time step, which results in the transition
of state from ht to ht+1. The visual information ϑ0 and ϑ1 of
image act as the source which guides the LSTM in generating
pt and hence Lt, based on input and output models ω and ψ.

These process flow of convolutional LSTM based visual
scanpath predictor is governed by the following equations:

x0 = ϑ0 = φ0 (F ) = WFϑ0
F + bF (2)

ϑ1 = φ1 (ϑ0) = Wϑ0ϑ1ϑ0 + bϑ1 (3)

ht = LSTM (ht−1, xt ⊕ ϑ1) t > 0 (4)

Lt ∼ pt = ψ (ht) (5)

Xt = ω (WLxLt−1 + bL) , t > 0 (6)

where φ0 used in the (2) is linear model to reduce the
dimension of feature vector such that it can be given to the
LSTM, ω used in (6) is a linear embedding model which
embeds the fixation locations, ψ used in the (5) is a fully
connected layer with softmax non-linearity which converts
hidden states into probability distributions over the dictionary
γ. The symbol ⊕ represents concatenation operation, and φ1
reduces the dimension of image feature ϑ0 such that after
concatenated with embedded feature vector Xt the resultant
vector will have proper dimension as input to LSTM. The
generation of ht from ht−1 and xt using LSTM as used in
(4) follows the expressions given in the (1). The processes
described in (4) to (6) are recursively applied with every time
step to get the sequence of locations for the input image.

An argmax decoding is applied to recover the fixation
location sequence Ł for a given image from the conditional
probabilities, and can be represented as:

Lt+1 = argmax
j∈γ

P (Lt+1 = j | I, L1, L2...Lt) (7)

So for a given image I the Convolutional LSTM based hu-
man visual scanpath predictor generates a sequence of fixation
locations {L1, L2...LT },Lt ∈ γ. We train the Convolutional
LSTM based visual scanpath predictor on an image from
human scanpaths (15%) and HMM generated scanpaths (85%)
on the image. The ground truth sequence of fixation locations
{L̂1, L̂2...L̂T },L̂t ∈ γ is a ground truth visual scanpath.

For each image, the loss function used is categorical cross
entropy loss over fixation locations between ground truth and
predicted visual scanpath, which is defined as:

£ = −
T∑
t=1

log p
(
Lt = L̂t | I, L̂t−1, ...L̂1

)
(8)

where L̂ denotes the ground truth terms. During the training
of the model the input terms {L̂t−1, L̂t−2...L̂1} are the ground
truth fixation locations.

2019 27th European Signal Processing Conference (EUSIPCO)



III. EXPERIMENTS

A. Dataset

We have used MIT dataset [21], a publicly available dataset
for training and evaluation of our method as considered in [9]
and [11]. MIT dataset is recorded human eye tracking data in
a free viewing setting. The dataset contains eye tracking data
from 15 people across 1003 natural images.

B. Evaluation Metric

For the evaluation of predicted visual scanpath, we used
sequence sccore (SS) as an evaluation metric proposed in
[22]. This method first uses mean-shift clustering to cluster
all the human fixation points in a given image considering an
optimal bandwidth parameter that maximizes the interaction
rate among the clusters as given in [9]. Then each of these
clusters with the corresponding fixations is represented by a
unique character yielding a string representation of a sequence
of fixations. As in [9], the Needleman-Wunsch string matching
is then used to determine the similarity score between fixation
sequences. For a predicted scanpath in an image, the similarity
scores are calculated against all human scanpaths for the
image, whose average gives the final evaluation score. The
overall interobserver similarity for an image is calculated by
averaging all the scanpath similarity scores obtained between
every two human scanpaths for that image.

C. Training Details

HMM: we set the number of hidden states N = 10. We
assume the continuous emission probability distribution to
be Gaussian. The values of the transition matrix and prior
distribution are initialized from uniform distributions. The
HMM for an image is trained for all the available human visual
scanpaths of different lengths on that image and then used to
generate artificial visual scanpaths comprising of 6 fixation
points.

ConvLSTM: In the convolutional LSTM based visual scan-
path predictor, the image feature set {F} described in Sec-
tion II-B has 204800 components. We have used a single
layer LSTM with 512 hidden units. Therefore, both {ϑ0}
and {ϑ1} concatenated with representation of fixation location
Xt, elaborated in Section II-B, are 512-dimensional feature
vectors. We trained the model with dropout and parameter
optimization using Adam optimizer with a learning rate of
0.00001 and exponential decay rate of values 0.9 and 0.999
for the first and second moment, respectively.

D. Results and Discussion

The recent studies [9], [11] have shown that Judd’s saliency
[21] method’s performance with IoR and WTA for visual
scanpath prediction is better than other saliency based meth-
ods, and also is comparable to the proposals in [9], [11],
the state-of-the-art. We compare our approach with several
saliency based methods [3], [23], including Judd’s [21]. As
shown in Fig. 2, our method performs substantially better
than above said methods, where the sequence scores of our
method are obtained by 10-fold cross-validation, and in a

similar vein, the scores for the other methods are averages over
all images. Since the codes for the state-of-the-art methods [9],
[11] have not been made available, so in Fig. 3, we compare
our approach with the state-of-the-art in an unbiased manner
by evaluating the improvement achieved over Judd’s method as
the baseline. We consider Judd’s method, as it’s performance
has been reported both in [9] (LSPI) and [11] (RNN) in
their corresponding settings. From Fig. 3, we observe the
performance improvement of three methods (LSPI, RNN and
ours) over the corresponding baseline Judd’s method. The
amount of improvements is also quantified in Table I. From
both Fig. 3 and Table I, we see that the proposed approach
achieves the most improvement over Judd’s. Note that inter-
observer performances cannot be used for such an unbiased
comparison as they are not affected the evaluation settings.
Human and predicted visual scanpaths by our and other
baseline models on a few images are shown in Fig. 4, which
demonstrates the effectiveness of our approach.

Fig. 2. Evaluation of our model (orange square) and baseline models Judd
[21] (gray triangle), GBVS [23] (yellow cross), Itti [3] (blue star), and inter-
observer performance (blue diamond) on the MIT dataset.

Fig. 3. Sequence Score (SS) plot for a) our model, b) LSPI [9], and c) RNN
[11] with corresponding Judd’s method [21].
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TABLE I
SUM OF DIFFERENCE OF SEQUENCE SCORE BETWEEN METHOD AND

BASELINE JUDD’S METHOD

Method Difference of sequence score (SS) between method
and baseline Judd’s saliency method Sum

of
DiffFixation

stage 1 2 3 4 5 6

LSPI 0.017 0.12 0.007 0.014 0.018 0.019 0.195
RNN 0.03 0.02 0.02 0.007 0 -0.006 0.071
Our
Method 0.119 0.086 0.059 0.038 0.023 0.014 0.339

Fig. 4. Qualitative evaluation of our approach and baseline methods on MIT
dataset, along with Human ground truth.

IV. CONCLUSION

A novel method for artificial visual scanpath generation
on images is discussed. The generation is achieved using a
convolutional long short term memory neural network that
contains a pretrained CNN. The LSTM is trained on available
human visual scanpaths and, HMM generated image-specific
visual scanpaths to learn a mapping between image features
and fixation locations given the previous fixation location. Our
approach, when evaluated on a standard dataset, has been
found to produce results quantitatively better than the state-
of-the-art. Qualitative analysis has also shown that meaningful
visual scanpaths are generated by the proposed method.
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