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Abstract—Communication and information field has witnessed
recent developments in wireless technologies. Among such emerg-
ing technologies, the Internet of Things (IoT) is gaining a lot of
popularity and attention in almost every field. IoT devices have
to be equipped with cognitive capabilities to enhance spectrum
utilization by sensing and learning the surrounding environment.
IoT network is susceptible to the various jamming attacks
which interrupt users communication. In this paper, two systems
(Single and Bank-Parallel) have been proposed to implement
a Dynamic Bayesian Network (DBN) Model to detect jammer
in Orthogonal Frequency Division Multiplexing (OFDM) sub-
carriers modulated with different M-QAM. The comparison of
the two systems has been evaluated by simulation results after
analyzing the effect of self-organizing map’s (SOM) size on the
performance of the proposed systems in relation to M-QAM
modulation.

Index Terms—Cognitive Radio, IoT, OFDM, Dynamic Bayesian
Network, Kalman Filter, Particle Filter.

I. INTRODUCTION

A pervasive paradigm in the information and communica-
tion field known as IoT connects a wide variety of ubiquitous
objects [1]. IoT is shaping real-world assets by providing
unique features to remain interconnected with anything at any
place and time by using any available network [2]. It has been
advocated to deploy wireless technology to connect objects
in IoT. However, this gives rise to the problem of spectrum
scarcity as many devices intend to utilize spectrum in order to
remain connected. Hence, technological trends are shifting to
integrate Cognitive Radio (CR) into IoT. CR is an emanating
technology which has been developed to eradicate the spec-
trum scarcity problem [3]. Devices in IoT must be equipped
with the cognitive capabilities to refrain from insufficient
utilization of spectrum [4]. CR is an intelligent system that
can sense, learn and adapt to the environmental modifications
by regulating optimally its operating parameters based on the
observation and previous experience. For CR to achieve the
required aforementioned objectives, the physical layer needs to
be highly flexible and adaptable. To this purpose, OFDM has
been recognized as an attractive transmission modulation tech-
nique for CR systems. In OFDM, all the elements of the time-
frequency grid can be scanned without any extra hardware by
exploiting the Fast Fourier Transform (FFT), which simplifies
the sensing process of the operating spectrum. Furthermore,
OFDM can be adapted to different transmission environments

by simply changing some parameters as FFT size, modula-
tion and transmission power, achieving good adaptation and
scalability. Moreover, since OFDM modulation is successfully
implemented in various technologies such as Wireless Local
Area Network (WLAN) standards (IEEE 802.11a, 11g, 11n,
11ac, 11ad, 11ah) and Long Term Evolution (LTE), it will
be easy for CR employing OFDM to inter-operate with such
technologies [5]. CR-IoT network suffers from various kind
of malicious attacks. Such kind of attacks aims to disrupt
communication, deplete the bandwidth and seize transmission.
Therefore, to achieve CR-IoT network objectives, providing
secure communication under jamming attacks is a basic yet
challenging task [6].
This paper is motivated by previous work on detecting jammer
[7]. Nonetheless, this paper differs from previous work since
i) It focus on investigating multiple sub-carriers modulated
with different M-ary QAM in the OFDM signal under jammer
attacks in the CR-IoT network. The general objective while
considering multiple sub-carriers is to track the jammers
behaviour and analyze how it is jumping between different
sub-carriers, to detect the attacked frequency and predict what
will be the next sub-carrier that the jammer might attack in
the next time instant. ii) Jammer detection is achieved by
implementing two proposed systems Single and Bank-Parallel
DBN. iii) Analyze the performance of the learned models
(Single and Bank-Parallel) in an unsupervised way in order
to understand the difference between the two systems and
evaluate the experimental results. Additionally, the effect of
changing SOM size in relation to QAM modulation is analyzed
and results are shown.
The proposed DBNs realize a Probabilistic Switching Models
(PSMs) which provide agility to draw inference for each time
slice about the spectrum at discrete and continuous levels by
employing a combination of Particle Filter (PF) for discrete
level and Kalman Filter (KF) for the continuous level. DBNs
are suitable for describing signals dynamics due to their
capability of modeling future instances based on observations
in a probabilistic way. Such a characteristic is useful when
performing tracking and recognizing abnormalities in CR. The
combined approach is called a Markov Jump Particle Filter
(MJPF), was first presented in [8] for different sensory data
abnormality detection. A test set is used to analyse the signal
which is affected by a jamming interference and both proposed
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methods are capable to detect jammer attacks.
The reminder of the paper is organized as follows. Section II
describes related work. Sections III and IV present the system
model and the proposed method, respectively. Experimental
results are discussed in section V. In section VI, conclusion
and future work are highlighted.

II. RELATED WORK

CR-IoT network is vulnerable to various jamming attacks.
Consequently, the performance of the network declines and
eventually becomes the worst under these attacks. Several
methods have been studied and proposed to detect such attacks
in CR-IoT network. These include signature-based method,
anomaly-based detection and classification. In this perspective,
anomaly-based detection method has been proposed to detect
malicious attacks by using machine learning techniques [9].
In [10] deep auto-encoders are deployed to identify abnormal
signals in wireless spectrum whereas, machine learning based
anomaly detection method is formulated in [11]. In [12] jam-
mer attacks in CR-IoT network are addressed by using channel
assignment technique. For practical IoT systems, machine
learning based security techniques are explored and discussed
in detail [13]. In [14], benefits of implementing OFDM modu-
lation in IoT network are highlighted. In CR, it is imperative to
learn legitimate and non-legitimate user’s behaviours to make
inferences about their states inside the spectrum by exploiting
statistical properties [15]. In this way, we can better predict
user’s activities in the spectrum as time evolves. Furthermore,
jammer’s behaviour can also be exploited in a much more vivid
way. In [16], authors formulate a novel encryption scheme
employing OFDM for a system to combat various attacks. In
[17], authors present eavesdropping-resilient OFDM system
based on sub-carriers interleaving and allocation relying on
channel state information. The joint time and power allocation
schemes are presented to improve security rate of OFDM
system against jamming attacks [18]. In [12], it is highlighted
that the anomaly-based approach is better to detect jammer
behaviour and, various CR features such as signal modulation,
signal power, centre frequency, channel bandwidth, carrier
sense threshold and bit error rate, can be used to evaluate
the performance of the network under normal operation. The
Signal Strength (SS) and Packet Delivery Ratio (PDR) are
exploited during the learning phase of the network under no
jamming attacks [19]. During the testing phase, the jammer
is accompanied by a normal signal and detection is done
by comparing jammer presence against the baseline profile.
In [20], authors proposed anomaly-based detection method
which uses K-mean clustering for a mobile network. In [21],
authors provided anomaly detection method to countermeasure
the effects of a jammer in CR network. In [22], jammer’s
behaviour is learned by implementing the Q-learning algo-
rithm. The work [21] involves many nodes in data processing
to perform anomaly behaviour analysis. Therefore, it is not
well-suited for the CR-IoT network. Moreover, [22] engages
many tiny nodes in learning jammer behaviour which raises
energy-constrained issues. Consequently, it can’t be deployed

in a CR-IoT network.
In this work, a probabilistic model based jammer detection
method is presented. We consider two readily available fea-
tures (amplitude and phase) of the received OFDM signal and
learn the DBN model, unlike the work presented in [19] which
relies on SS and PDR and doesn’t provide practical imple-
mentation aspects of the system. Moreover, it is shown that
IoT devices use radio channel bandwidth, channel gain and
receive jammed power to implement the Q-learning algorithm
[13]. On the contrary, we rely on two simple characteristics
of the received signal by taking an inherited advantage of the
FFT module inside the OFDM signal which gives amplitude
and phase of the signal. Hence, the processing is much more
convenient and well-suited for CR-IoT network.

III. SYSTEM MODEL

We consider a CR-IoT network consisting of a group
of Cognitive Radio Users (CRUs) and a jammer trying to
disrupt the communication as shown in Fig. 1. CRUs sense
the spectrum continuously and try to detect the abnormal
situation. The radio spectrum contains OFDM waveforms
based on IEEE 802.11ah standard, which is adopted in this
work. OFDM divides the band channel into many narrower
sub-carriers allowing different users to transmit simultaneously
with different orthogonal frequencies. The OFDM modulated
signal consists of a set of N sub-carriers:

C = {C1, C2, . . . , CN}, (1)

each sub-carrier is divided into Q symbols in the time domain,
forming a N × Q time-frequency grid. In the previous work
[7] only one sub-carrier is picked to employ the proposed
method supposing that OFDM use 16-QAM for all the sub-
carriers in the set (1). Instead, here we consider multiple sub-
carriers modulated with different QAM (4, 16, 64, and 256-
QAM according to the standard IEEE 802.11ah). Exploiting
FFT output which consists of amplitude and phase of each
symbol makes the spectrum sensing easier and less complex
where CRUs can scan the entire grid. Moreover, by using
the Amplitude and Phase information at this level, permits
to implement a jammer detection technique before demodu-
lation of the signal which reduces the receiver complexity.
The jammer attacks at different time instants by jumping
from one frequency into another. We assume that there is
perfect synchronization between the transmitter and receiver.
To evaluate the dynamics of the amplitudes and phases related
to consecutive symbols and how they are evolving with time,
we consider the derivatives (ȧ, ṗ) of both amplitudes (a) and
phases (p), and the generalized state vector can be defined at
each time instant k for a specific sub-carrier as,

Xk,Cn
= [ a p ȧ ṗ ] n = {1, 2, . . . , N}, Cn ∈ C (2)

A set of generalized state vectors corresponding to each sub-
carrier is defined as:

X = {Xk,C1
, Xk,C2

, . . . , Xk,CN
}, (3)
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Fig. 1: Spectrum of the M-ary QAM modulated OFDM users
in the CR-IoT Network under jammer attacks

IV. PROPOSED METHOD

The proposed method follows several processes that lead to
detect abnormality behaviours in the spectrum, including the
Offline Learning Process and the Online Testing Process. Two
systems have been proposed Single and Bank-Parallel to
deal with multiple sub-carriers where the processes mentioned
previously are used in both systems to learn the DBN model
and obtain the abnormality indicator, respectively.

A. Offline Learning Process

The Dynamic Bayesian Network (DBN) model which is
shown in Fig.2 is learned after obtaining a set of state vectors
which describe signal behaviour in the spectrum under normal
situation (without jammer). DBN enables to include depen-
dencies between involved random variables as time evolves.
DBN facilitates the representation of different inference levels
related to the spectrum’s dynamics. Consequently, here the
lowest level of inference corresponds to measurements Zk

related to the received OFDM symbols of the observed carriers
in terms of amplitude and phase. States of the spectrum, Xk,
represent a medium inference level which encodes continuous
information of the spectrum. Super-states Sk corresponds to
the top level of inference, which consists of the discretiza-
tion of continuous information. Additionally, arrows represent
conditional probabilities between the involved variables. Ver-
tical arrows facilitate to describe causalities between both,
continuous and discrete levels of inference and observed
measurements. Horizontal arrows explain temporal causalities
between hidden variables. In order to learn the super-states,
we employed a SOM that uses as input the states of the
spectrum and produces a set of super-states S including similar
information (quasi-constant derivatives) [8], such as:

S = {S1, S2, . . . , SL}, (4)

where Sk ∈ S and L is the total number of superstates.
A temporal transition matrix can be estimated by observing
the activated superstate over time and encode the probabilities
P (Sk|Sk−1, tk) of moving from a current superstate to another
one (Sk), considering the time tk spent in the current super-
state (Sk−1). Each super-state is characterized by a mean value
and covariance matrix. To analyze and make inferences about
a dynamic system, two models are required: the measurement
model that maps observation into states and the dynamic

model that describes the evolution of the state with time, and
it can be written as:

Xk = AXk−1 +BUSk−1
+ wk, (5)

where Sk is the previous obtained region, A = [A1 A2] is
a dynamic model matrix: A1 = [I2 02,2]ᵀ and A2 = 04,2.
In represents a square identity matrix of size n and 0l,m is a
l×m null matrix. B = [I2∆k I2]ᵀ is a control input model.
wk represents the prediction noise. The variable USk−1

is a
control vector that encodes the spectrum’s action when it is
inside a superstate Sk, such that:

USk
= [ȧSk

ṗSk
]ᵀ, (6)

Accordingly, it is possible to estimate the probability of
obtaining a future spectrum’s state given its present state
P (Xk|Xk−1, Sk−1) for each superstate Sk−1.

𝒁𝒌−𝟏 𝒁𝒌

𝑿𝒌−𝟏 𝑿𝒌

𝑺𝒌−𝟏 𝑺𝑲

Time Evolution

P(𝑆𝑘|𝑆𝑘−1)

P(𝑋𝑘|𝑆𝑘)

P(𝑋𝑘|𝑋𝑘−1)

P(𝑍𝑘|𝑋𝑘)

Fig. 2: Proposed DBN model to detect jammer in the Spectrum

B. Online Testing Process

To infer and detect the jammer, we proposed to use the
MJPF introduced in Section I. As mentioned before, the
MJPF uses Particle filter to make inferences at discrete level.
Additionally, each considered particle employs a Kalman
Filter corresponding to the dynamic model learned for the
corresponding value of the superstate (Eq.5) at the continuous
level. As abnormal measurement, we use the db1 (at the
discrete level) which is the similarity (based on Bhattacharrya
distance) between prediction and the likelihood of being inside
the predicted superstate. For more details on how the MJPF
makes inferences on the learned DBNs for predicting and
detecting anomalies refer to [8].

C. Single Dynamic Bayesian Network

As shown in figure 3, we use the set of state vectors
corresponding to each sub-carrier in (Eq.3) to learn a single
DBN. During the Offline Learning Process, X is considered
as input of the SOM which outputs a set of neuron S. In
this approach, S consists of the discretization of the entire
spectrum. However, single DBN keeps a memory of the spec-
trum’s behaviour in time and frequency domain. Additionally,
a single abnormality indicator is provided during the online
Process.
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Fig. 3: Single DBN system

D. Bank-Parallel Dynamic Bayesian Network

In this approach, we don’t have any correlation between
the sub-carriers, where the spectrum’s behaviour at each sub-
carrier Xk,Cn

is processed individually (Fig 4). Accordingly,
for each Xk,Cn

we learn a DBN, such as:

DBN = {DBN1, DBN2, . . . , DBNN}, (7)

In the online process, a MJPF is applied on each DBNn

providing an Abnormality signal, such as:

db1 = {db11, db12, . . . , db1N}, (8)

Offline Learning 
Process

Bank-Parallel DBN

𝑿𝒌,𝑪𝟏

𝑿𝒌,𝑪𝟐

𝑿𝒌,𝑪𝑵

DBN 
1

DBN 
2

DBN 
N

Offline Learning 
Process

Offline Learning 
Process

Fig. 4: Bank-Parallel DBN system

V. EXPERIMENTAL SETUP AND RESULTS

A. Data Source

We use the OFDM system based on the IEEE 802.11ah
standard. We use a simulated OFDM signal consists of N =
64 sub-carriers and Q = 1000 symbols. The source generates
random independent data. Each sub-carrier of the OFDM
signal is modulated with different QAM modulation. For our
experiments, we pick four sub-carriers with different QAM
modulation (4, 16, 64, 256). The received signal is assumed
to be affected by additive white Gaussian noise (AWGN) with
zero mean and power spectral density σ2

w. Data is cleaved
into two data sets: first set contains clean data (without jammer
attacks) which is used during the training phase and the second
one includes jammer’s attacks which is used during testing,
immediately after the cyclic prefix (CP) is removed and FFT is
performed on received data. We consider that jammer launches
attacks into multiple sub-carriers with equal power.

B. Performance evaluation of M-ary QAM with SOM size

The performance of Single and Bank-Parallel DBN models
are evaluated under multiple attacks and results are shown in
terms of ROC curves which consist of Probability of Detection
(Pd) and Probability of False Alarm (Pf ), and Area Under

Curve (AUC). The abnormality measurement (db1) is used to
calculate the (Pd) and (Pf ) respectively. (Pd) is the number
of times where abnormalities (related to jammer attacks) are
correctly identified, while (Pf ) are the times where anomalies
are wrongly assigned to normal symbols. Fig. 5 illustrates
the ROC curve obtained from Single DBN when a different
number of neurons is selected. It is evident from Fig. 5 and
Tab. I that 1024 neurons are the most appropriate for a Single
DBN. Whereas, Fig. 6a, 6b, 6c and 6d present Bank-Parallel
DBN ROC curves. For every ROC curve, each DBN deploys
different QAM and optimum SOM size is analyzed. In case
of 4-QAM, the optimum SOM size is 4 (see Fig. 6a and Tab.
II). In 16-QAM is 4 (refer Fig. 6b and Tab. II). For 64-QAM,
is 8 (see Fig. 6c and Tab. II), and for 256-QAM is 8 (refer
Fig. 6d and Tab. II). We believe that the optimum number
of neurons depend on the data and the number of symbols.
For the simulated data used in our experiments and from the
obtained results, we can notice that the Bank-Parallel system
performs well for a small number of neurons, where the Single
system performs well for a large number of neurons. This is
due to the fact that Single-DBN uses the generalized state
vector consisting of a large number of samples (4Q symbols),
which is 4 times the number of symbols used in Bank-Parallel
system.
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Fig. 5: ROC for a Single-DBN under attacks while varying
SOM size

SOM size 4 16 64 128 256 512 1024
AUC (%) 98.95 99.75 99.05 99.89 99.71 99.93 99.95

TABLE I: Precision measurements for a Single-DBN

C. Comparison between Single and Parallel DBN
After using the optimum number of neurons obtained pre-

viously to make a fair comparison between the two systems.
The performance of both systems is somehow similar as
shown in Fig. 7. We can deploy either of the proposed
methods depending on the receiver complexity and specific
task. For instant, Single DBN learns single vocabulary for
all sub-carriers, whereas, Bank-Parallel DBN learns multiple
vocabularies corresponds to each sub-carrier which increases
complexity. Subsequently, implementing bank parallel DBN
is suitable for the source characterization tasks. Tracking the
jammer and keeping its profile history in the entire spectrum
is much more convenient in Single DBN.
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Fig. 6: ROC for an individual DBN in Bank-Parallel-DBN
employs different M-QAM under attacks while varying SOM
size

SOM size
4 8 16 32 64 128 256

A
U

C
(%

) 4-QAM 99.99 99.89 96.65 97.82 96.64 98.23 96.38
16-QAM 99.86 99.79 99.51 99.7 97.46 96.51 91.76
64-QAM 99.16 99.89 99.61 99.67 96.31 95.11 97.13

256-QAM 98.55 99.83 98.87 99.2 96.1 91.36 95.35

TABLE II: Precision measurements for a Bank-Parallel-DBN
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Fig. 7: Performance comparison between Single-DBN and
Bank-Parallel-DBN in terms of ROC

VI. CONCLUSION AND FUTURE WORK

In this work, we present a jammer detection method in mul-
tiple OFDM sub-carriers by using two different systems. Sub-
carriers are modulated with different M-QAM and optimum
SOM size is selected for each QAM modulation based on
the probability of detecting multiple attacks. As a conclusion
we have learned that using the two systems, Single DBN
and Bank-parallel DBN, exhibits similar performance under
multiple attacks. The results presented in this work provide
an understanding to further investigate the dynamic behaviour
of the jammer in order to track its activity inside the spectrum
and characterize it.
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