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Abstract—In this paper, we address a joint user scheduling and
power allocation problem from a machine-learning perspective in
order to efficiently minimize data delivery time for multiple-input
single-output (MISO) systems. The joint optimization problem
is formulated as a mixed-integer and non-linear programming
problem, such that the data requests can be delivered by
minimum delay, and the power consumption can meet practical
requirements. For solving the problem to the global optimum,
we provide a solution to decouple the scheduling and power
optimization. Due to the problem’s inherent hardness, the optimal
solution requires exponential complexity and time in computa-
tions. To enable an efficient and competitive solution, we propose
a learning-based approach to reduce data delivery time and
solution’s computational delay, where a deep neural network is
trained to learn and decide how to optimize user scheduling.
In numerical study, the developed optimal solution can be used
for performance benchmarking and generating training data
for the proposed learning approach. The results demonstrate
the developed learning based approach is able to significantly
improve the computation efficiency while achieves a near optimal
performance.

Index Terms—Time minimization, machine learning, power
allocation, user scheduling.

I. INTRODUCTION

For the upcoming 5G communication systems, develop-

ing intelligent transmission schemes and advanced resource

scheduling algorithms are considered as a key enabler to

achieve the strict performance requirements 5G [1]. On this

track, there are numbers of studies in the literature that

develop sophisticated scheduling algorithms. A related topic

is transmission scheduling without power control. In [2], the

authors investigated a minimum-length scheduling problem

for generic wireless networks. The problem’s NP-hardness,

optimality conditions, and a set of scheduling algorithms

have been studied. The authors in [3] developed a column-

generation based scheduling algorithm to complete all the data

transmission within a transmission deadline.

For joint transmission scheduling with power control, the

authors in [4] proposed centralized and distributed scheduling

approaches to improve energy efficiency. In [5], the authors

studied joint optimization of link scheduling and power control

for energy minimization. Compared to the scheduling prob-

lem without power control, the joint optimization for user

scheduling and power control is more challenging. This is

because the two components, i.e., finding the optimal user

groups and the optimal power allocation policy, are mutually

coupled in decision making, which typically leads to a non-

linear optimization [5] and thus results in difficulties to deliver

optimal solutions [6].

In general, the scheduling optimization problems are hard

to solve [2], [3]. It may not be practical to apply a sophisti-

cated algorithm to real-time operations. Due to the problem’s

inherent hardness, the high computational complexity and long

processing time limit the algorithm’s applicability in practice.

The execution-time for performing an algorithm in real-time

systems is typically stringent, e.g., during a scheduling pe-

riod, one should return the optimized results within a short

interval, e.g., seconds or milliseconds [1]. However, executing

optimal algorithms may require considerable computational

capabilities and time [7]. An optimizer has to balance the

algorithm’s computation efficiency and the solution quality.

In this paper, from a machine-learning perspective, we inves-

tigate an alternative trade-off solution for the joint scheduling

and power control. Machine/deep learning techniques have

received much attention in wireless communications over the

past few years [8]–[11]. In [10], [11], the authors proposed

a set of learning based optimization approaches to improve

the scheduling performance and reduce the computational

complexity without considering power control.

In this paper, we tackle the joint scheduling and power con-

trol problem for multiple-input single-output (MISO) systems

from a machine learning perspective. Firstly, we formulate

the joint user grouping and power allocation as an integer

non-linear programming problem. Secondly, we provide an

approach to decouple these two parts and obtain optimal

solutions for performance benchmarking. The optimization

approach, however, imposes an exponential computing com-

plexity, which may limit its capability in real-time applica-

tions. Thirdly, we design a learning-based algorithm to enable

fast execution in decision making while providing competitive

performance. The derived optimal solutions are used to prepare

data sets for training a deep neural network to learn the

optimal solution in grouping and scheduling. Finally, we use

numerical results to demonstrate the promising capabilities

of the proposed learning approach in approximating optimal

scheduling solution and reducing computational time.

II. SYSTEM MODEL

We consider a downlink MISO system including an L-

antenna base station (BS) and K single-antenna users denoted
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as K = {1, . . . , k, . . . ,K}. All the users share a common

communication channel in transmission. The k-th user requests

a content of length Qk bits. We assume the wireless channel

follows the block Rayleigh fading. In order to mitigate co-

channel interference and improve the transmission efficiency,

the dynamic user-group scheduling and precoding strategy

are adopted. Let g denote a user group and Kg denotes

the users included in group g. When group g is scheduled,

the BS will deliver the requested contents to all the users

in Kg until all the transmissions for Kg are completed. In

total, there are G = 2K − 1 possible candidate groups

by enumerating all of the user groups, and the union of

all the candidates is denoted by G = {1, ..., g, ..., G}. For

instance, when K = 3, we can list all the candidate groups

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

The channel vector of user k is denoted by hk ∈ C
L×1,

where L is the number of antennas. We assume hk fol-

lows circular-symmetric complex Gaussian distribution hk ∼
CN (0, σ2

hk
IL), where σ2

hk
is the parameter related to the path

loss between the BS and user k. In order to mitigate inter-

user interference, the BS precodes the data before serving the

users. Denote xg
k as the modulated signal and wg

k ∈ C
L×1

as the precoding vector for user k in group g. The received

signal at user k ∈ Kg is given as

ygk = hH
k wg

kx
g
k +

∑

i∈Kg\{k}
hH
k wg

i x
g
i + nk, (1)

where the first and second terms in (1) represent the desired

signal and the inter-user interference respectively. nk is Gaus-

sian noise with zero mean and variance σ2. The signal-to-

interference-plus-noise ratio (SINR) for user k ∈ Kg is given

by SINRg
k =

|hH
k wg

k|2∑

i∈Kg\{k}
|hH

k wg
i |2+σ2 . The achievable data rate

can be expressed as

Rg
k = B log2 (1 + SINRg

k) , k ∈ Kg. (2)

With respect to the delivery time, once the scheduling

combination C is determined, the selected groups will be

scheduled sequentially. Denote tg as the transmission duration

when group g is scheduled. The transmission for a scheduled

group g will last until all the users’ requests in Kg are satisfied.

tg is given as tg = maxk∈Kg

Qk

Rg
k

. The total delivery time is

defined as Ttot =
∑

g∈C tg .

III. JOINT SCHEDULING AND POWER ALLOCATION

PROBLEM

We consider a joint user scheduling and power allocation

problem in order to minimize the total delivery time. The zero-

forcing (ZF) precoding is adopted for each group due to its

low computational complexity. For each scheduled group g,

denote Hg as the channel coefficients from the BS’s antennas

to the users in group g, which is a |Kg|×L matrix. Under the

ZF design, the beamforming vector for user k in group g is

of the form wg
k =

√
pgkw̃

g
k, where pgk is the power allocation

for user k in group g and w̃g
k is the k-th column of the ZF

precoding matrix HH
g (HgH

H
g )−1. It is worth noting that under

the ZF design, the inter-user interference is fully mitigated, i.e.,

|hH
k wg

j | = δkj . Then the achievable rate for user k in group

g is given as

Rg
k = B log2

(
1 + pgk/σ

2
)
, k ∈ Kg. (3)

The transmit power of user k is pgkβ
g
k , where βg

k = ‖ w̃g
k ‖2,

∀k ∈ Kg .

A. Problem Formulation

The joint user scheduling and power allocation is formulated

in P0. We introduce two sets of variables, zg ∈ {0, 1}, ∀g ∈ G
and pgk, ∀k ∈ K, ∀g ∈ G. The binary variable zg is used to

indicate if group g is scheduled (zg = 1) or not (zg = 0). The

continuous variable pgk > 0 represents the power allocation

among the users in group g.

P0 : Minimize
zg∈{0,1},pg

k>0

∑

g∈G
zg max

k∈Kg

Qk

Rg
k

(3a)

s.t. Rg
k ≥ ηk, ∀k ∈ Kg, ∀g ∈ G, (3b)
∑

k∈Kg

βg
kp

g
k ≤ Ptot, ∀g ∈ G, (3c)

∑

g∈G
akgzg = 1, ∀k ∈ K. (3d)

The objective in P0 is to minimize the total data transmission

length, where the duration of scheduling group g depends on

maxk∈Kg

Qk

Rg
k

. Constraint (3b) is to guarantee users’ minimum

rate ηk in their transmission period. The second constraint (3c)

restricts that the power consumption in each group cannot

exceed power budget Ptot. In constraints (3d), we consider

that each user is scheduled once to reduce the implementation

complexity and the signaling overhead in practice, where

binary parameters akg = 1 indicates group g contains user

k, otherwise 0.

B. Optimal solution

In general, P0 is a mixed integer non-linear programming

problem. To enable the optimal solution, we observe that the

problem can be decomposed to two steps. In the first step, we

enumerate all the groups and optimize the power allocation

within each group such that the QoS constraints (3b) and (3c)

are satisfied for each group and users. In the second step, we

select a combination of groups, which leads to the minimum

transmission time, and covers all the users. In addition, each

user appears only once in the combination.

Firstly, for each group g, the intra-group power allocation

problem can be formulated in P1(g):

P1(g) : Minimize
pg
k>0

max
k∈Kg

Qk

Rg
k

(4)

s.t. Rg
k ≥ ηk, ∀k ∈ Kg (4a)
∑

k∈Kg

βg
kp

g
k ≤ Ptot, (4b)
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By introducing a variable Tg , problem P1(g) is equivalent

to the following problem:

P1’(g) : Minimize
pg
k>0,Tg≥0

Tg (5)

s.t. Tg ≥ Qk

log2(1 + pgk/σ
2)
, ∀k ∈ Kg (5a)

log2(1 + pgk/σ
2) ≥ ηk, ∀k ∈ Kg (5b)

∑

k∈Kg

βg
kp

g
k ≤ Ptot, (5c)

The constraint (5a) is equivalent to, log2(1+pgk/σ
2)−Qk

Tg
≥

0, ∀k ∈ Kg , which is a convex constraint. Thus P1’(g) is a

convex problem, and can be solved by standard tools [12].

The next optimization task is to select a group combination

leading to the minimum transmission time and covering all

the users once. The problem can be formulated by an integer

linear programming (ILP) problem in P2.

P2 : Minimize
zg∈{0,1}

∑

g∈G
zgtg (6)

s.t.
∑

g∈G
akgzg = 1, ∀k ∈ K (6a)

After solving P2, the solution zg can be used for generating the

optimal group combination Copt by deleting the unscheduled

groups (zg = 0) from G. The optimal method is summarized

as Algorithm 1.

Algorithm 1 Optimal Algorithm

1: Inputs:
2: Q1, . . . , QK , h1, . . . , hK , η1, ..., ηK , and Ptot

3: Outputs:
4: Copt and power allocation pgk, k ∈ Kg, g ∈ Copt
5: for each g ∈ G do
6: Solve P1’(g) and obtain pgk, k ∈ Kg

7: Compute tg based on maxk∈Kg

Qk

Rg
k

8: end for
9: Solve P2 and obtain zg, g ∈ G

10: Use the groups with zg = 1 to form a combination Copt

By our characterizations, the optimal solution of P0 can be

obtained by solving a convex problem for each group along

with solving an integer linear programming problem P2. The

whole problem is inherently hard and with high complexity

since exponential number of groups need to be optimized

by P1’(g). Moreover, the subproblem P2 is equivalent to an

exact cover problem which is known as NP-complete [13].

Algorithm 1 can be used as an offline optimization method to

provide optimal solutions, and for performance benchmarking.

However, the searching space and the consumed time expo-

nentially increase with the number of users, then this algorithm

may not be able to meet the stringent latency requirements in

real-time applications.

IV. SCHEDULING ALGORITHM DESIGN BASED ON DEEP

LEARNING

In order to overcome the high complexity in obtaining the

optimum, we design a deep neural network (DNN) based

approach to provide a high-quality and computational-efficient

solution for the primal problem P0. The optimal algorithm in

Section III is used to generate training sets. The after-trained

DNN model is then applied to predict the scheduled groups.

We denote the training data as (x, y). The input x refers to

the channel vector hk ∈ C
L×1, users’ demands Q1, ..., QK ,

users’ rate requirements η1, ..., ηK , and the maximum power

Ptot. For the DNN outputs, they can not be treated as the

optimal solution z1, ..., zG directly, since P0 has an exponential

number of variables and has constraints to be satisfied. This

introduces difficulties to achieve solution feasibility and good

prediction performance. For instance, DNN may determine

to schedule several groups. These groups could violate

constraints (3d). Instead, the output node is designed as the

possibility of using a group combination. The reason is that

due to the system limitations, e.g., number of antennas, the

number of all the group combinations, denoted by N , can

be much less than the number of groups G. Moreover, the

feasibility issue of constraints (3d) can be resolved in each

combination. By our design, we first list all of the candidate

combinations as a union C = {C1, ..., CN}. Then the output

of the DNN prediction is organized in a N -dimension binary

vector y = [y1, ..., yN ]. If yn = 1, it means the combination

Cn is selected and all the groups in combination Cn are

scheduled. For example, when K = 3 and L = 2, the

candidate groups are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and

G = 6. Note that the group {1, 2, 3} is excluded due to the

practical limit of |Kg| ≤ L. The candidate combinations are

{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}
and N = 4. If the combination {{1, 2}, {3}} is selected,

vector y is [0, 1, 0, 0] in the training set.

For preparing the training set, we generate the instances

with different channel conditions, demands, rate requirements

and power limits. After sufficient training, the DNN is able to

predict the grouping information y. That is, given a new input

x̂, the after-trained DNN will provide the estimated scheduling

decision ŷ. However, the original DNN output is not binary

which cannot serve as an indicator for user scheduling. To

solve the problem, we use the sigmoid function [14] in the

DNN’s output layer to limit the value between 0 and 1. Then,

a rounding operation is adopted to convert fractional values to

binary. More specifically, we use M as the mean of ŷ. If any

fractional value ŷn > αM , we set ŷn = 1, otherwise zero,

where α > 0 is a control parameter. By design, smaller α
increases the likelihood of “1” in ŷ, which also contributes to

the improvement of prediction accuracy.

The DNN-based approach is summarized in Algorithm 2.

It is worth nothing that there are three cases with regard

to ŷ after rounding. The ideal case is ‖ ŷ ‖= 1, which

means only one element is 1. Then the scheduled groups

are from this only combination. In the second case, vector
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ŷ may have multiple elements with value “1”. Hence, we

design a re-selection scheme to make final decisions. Firstly,

we delete a considerably large amount of combinations from

C according to ŷ. The remaining combinations compose a

reduced candidate list C∗. For example, if ŷ = [0, 1, 1, 0],
then the combination list C = {C1, C2, C3, C4} is reduced to

C∗ = {C2, C3}. After that, we recall Algorithm 1 with the

restricted set C∗ and obtain the final scheduling combination

Cdnn more efficiently. In the third case, DNN may return an

all-zero vector ŷ. For dealing with this case, we then adjust the

control parameter α as follows to enable at least one element

with value “1”.

Algorithm 2 Learning-based Approach

1: Inputs:
2: C, Q1, . . . , QK , h1, . . . , hK , η1, ..., ηK , and Ptot

3: Outputs:
4: Cdnn and power allocation for each user

5: Given a new input x̂ to the well-trained DNN

6: Apply rounding operations with α then obtain ŷ
7: if ‖ ŷ ‖> 1 then
8: Delete combinations from C according to the zero

elements in ŷ
9: Obtain the restricted set C∗

10: Apply Algorithm 1 based on C∗

11: Obtain the selected combination Cdnn and power

12: allocation for each user

13: else
14: if ‖ ŷ ‖= 1 then
15: Choose the only combination as Cdnn
16: else if ‖ ŷ ‖= 0 then
17: Reduce α until ‖ ŷ ‖≥ 1
18: end if
19: for each group g in Cdnn do
20: Solve P1’(g) and obtain pgk
21: end for
22: end if

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the DNN-

assisted approach, in terms of computational time, and per-

formance gaps between the proposed learning approach and

the optimal solutions. In the simulation, the BS is equipped

with up to 5 antennas, serving up to 10 users. We set

σ2 = 0.01, B = 1MHz and σ2
hk

= 1, ∀k. We limit the

cardinality of each group to the number of antennas. If L = 5
and K = 10, the number of candidate groups is G = C5

10

and the number of the group combinations is N =
C5

10

2 .

For DNN implementation, TensorFlow framework is used for

building the neural network in Python. We design a fully

connected DNN with two hidden layers. The DNN input is

organized to a one-dimension vector, which consists of channel

coefficients |hlk|2, ∀l ∈ {1, ..., L}, ∀k ∈ {1, ...,K}, users’

demand Q1, ..., QK , users’ rate requirement η1, ..., ηK , and

power limit Ptot. Thus the number of the input nodes is

K(L + 2) + 1. During the training phase, mean square error

(MSE) is adopted as the loss function which is minimized

by the Adam method [14]. Besides, a regularization item is

introduced to prevent overfitting. In the DNN testing phase,

100 test sets/samples are used to average the results. Since the

selected parameters of DNN are able to affect the satisfactory

performance, we perform some pretests for evaluating several

parameters, e.g., number of hidden layers and neurons per

layer. The DNN settings are summarized in Table I.
Table I

DNN SETTINGS

Parameter Value

Number of input nodes K(L+ 2) + 1
Number of hidden layers 3

Number of nodes for hidden layers 300

Number of output nodes N
Activation function in hidden layers Relu

Activation function in output layer Sigmoid

Loss function MSE

Optimizer Adam optimization

To demonstrate the computation efficiency of the DNN-

assisted approach, the CPU time (in seconds) of the DNN

and the optimal method are compared in Table II. The com-

putational time in DNN test phase (CPU time for executing

lines 5-6 in Algorithm 2) is insensitive to the problem’s

scale. It keeps at the same magnitude in both cases. In

general, the computational time of the proposed DNN-assisted

approach (CPU time for executing line 5-22 in Algorithm 2)

is dramatically reduced compared with the optimal algorithm.

We remark that the total CPU time in Algorithm 2 varies with

three cases of ‖ ŷ ‖. It is noted that, in the case of ‖ ŷ ‖> 1,

the time is more than the other two cases. This is because

when ‖ ŷ ‖> 1, the power allocation problem P1’(g) needs to

be solved for more groups.
Table II

CPU TIME IN COMPUTATION

Algorithmic Solutions
K = 4
L = 2

K = 10
L = 5

Algorithm 1 6.031 354.140

DNN test phase in Alg. 2 0.083 0.139

Alg. 2 for case 1, ‖ ŷ ‖= 1 1.211 2.910

Alg. 2 for case 2, ‖ ŷ ‖> 1 2.451 32.145

Alg. 2 for case 3, ‖ ŷ ‖= 0 1.330 3.039

Fig. 1 shows the performance of the DNN-assisted ap-

proach compared with the optimal solution, with increasing

the training set size. The performance gaps on the vertical

axis represents the relative delivery time of the DNN-assisted

method with respect to the optimum value. In general, using

more data in the training set improves the prediction accuracy

of the DNN-based method. In particular, the performance

reaches to the optimum when the size of training set is around

800, leading to the smallest gap around 8%, 9% and 10% in

the case of α = 2.4, α = 2.6 and α = 2.8 respectively.
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Figure 1. Average gaps between DNN and optimum (K = 10, L = 5)

Fig. 2 presents the difference of the total data transmis-

sion length Ttot between the DNN-assisted approach and

the optimal method in each tested case. Over 100 testing

samples, the average gaps of objective values between the two

algorithms are small, around 8%. This shows that the DNN

approach is able to provide a near-optimal solution with high

computational efficiency.
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Figure 2. Transmission time comparison between the DNN-based algorithm
and the optimal algorithm (K = 10, L = 5, α = 2.8, training set size= 800)

Next, we evaluate the effect of α on the performance gap

and the computation complexity in the re-selection phase.

As shown in Fig. 3, the time monotonically decreases with

the growth of α, whereas the performance of the DNN in

approaching to the optimum is degraded. As we analyzed in

section IV, when α is large, a small amount of combinations

will be in the restricted candidate set C∗, thus leading to less

computational time. On the other hand, the fewer candidates

in C∗ can possibly result in higher the probability to loss

optimality.
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Figure 3. Optimality and re-selection time with different α (K = 10, L = 5,
training set size= 800)

VI. CONCLUSION

We have investigated the joint user scheduling and power

allocation problem for multiuser MISO systems to minimize

the data delivery time. In order to obtain the global optimum,

an optimal method with exponential complexity was designed.

Toward an efficient solution, we trained a DNN to learn

the mapping function between the problem’s inputs and the

optimal solutions. We proposed a DNN-assisted approach

to enable near-optimality and less computational delay. Nu-

merical results show the DNN-assisted approach can well-

approximate the optimum with low computation complexity.

VII. ACKNOWLEDGMENT

The work has been supported by the ERC project AG-

NOSTIC (742648), by the FNR CORE projects ROSETTA

(11632107) and ProCAST (C17/IS/11691338), and by the

FNR bilateral project LARGOS (12173206).

REFERENCES

[1] M. Agiwal, A. Roy and N. Saxena, “Next Generation 5G Wireless
Networks: A Comprehensive Survey,” in IEEE Communications Surveys
& Tutorials, vol. 18, no. 3, pp. 1617–1655, third quarter 2016.

[2] V. Angelakis, A. Ephremides, Q. He and D. Yuan, “Minimum-time link
scheduling for emptying wireless systems: solution characterization and
algorithmic framework,” in IEEE Transactions on Information Theory,
vol. 60, no. 2, pp. 1083-1100, Feb. 2014.

[3] L. Lei, D. Yuan, C. K. Ho, and S. Sun, “Optimal Cell Clustering and
Activation for Energy Saving in Load-Coupled Wireless Networks,” in
IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp.
6150–6163, Nov. 2015.

[4] S. Lahoud, K. Khawam, S. Martin, G. Feng, Z. Liang and J. Nasreddine,
“Energy-Efficient Joint Scheduling and Power Control in Multi-Cell Wire-
less Networks,” in IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3409–3426, Dec. 2016.

[5] G. D. Nguyen, S. Kompella, C. Kam, J. E. Wieselthier and A. Ephremides,
“Minimum-energy link scheduling for emptying wireless networks,” in
proc. 13th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 207–212, 2015.

[6] K. Rahimi Malekshan and W. Zhuang, “Joint Scheduling and Transmis-
sion Power Control in Wireless Ad Hoc Networks,” in IEEE Transactions
on Wireless Communications, vol. 16, no. 9, pp. 5982–5993, Sept. 2017.

[7] L. Lei, L. You, Q. He, T. X. Vu, S. Chatzinotas, D. Yuan, and B.
Ottersten, “Learning-Assisted Optimization for Energy-Efficient Schedul-
ing in Deadline-Aware NOMA Systems,” IEEE Transactions on Green
Communications and Networking, accepted, 2019.

[8] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the
Physical Layer,” in in IEEE Transactions on Cognitive Communications
and Networking, vol. 3, no. 4, pp. 563–575, Dec. 2017.

[9] T. X. Vu, L. Lei, S. Chatzinotas, and B. Ottersten, “Machine Learning
based Antenna Selection and Power Allocation in Multi-user MISO Sys-
tems,” in Proc. The 2019 International Workshop on Machine Learning
for Communications (WMLC 2019), pp. 1–5, Jun. 2019.

[10] Z. Chang, L. Lei, Z. Zhou, S. Mao and T. Ristaniemi, “Learn to Cache:
Machine Learning for Network Edge Caching in the Big Data Era,” in
IEEE Wireless Communications, vol. 25, no. 3, pp. 28–35, June 2018.

[11] L. Lei, L. You, G. Dai, T. X. Vu, D. Yuan, and S. Chatzinotas,
“A deep learning approach for optimizing content delivering in cache-
enabled HetNet,” in proc. IEEE International Symposium on Wireless
Communication Systems (ISWCS)’, 2017.

[12] T. X. Vu, S. Chatzinotas, and B. Ottersten, “Edge-Caching Wireless
Networks: Performance analysis and optimization,” in IEEE Transaction
on Wireless Communcation., vol. 17, no. 7, pp. 2827 – 2839, Apr. 2018.

[13] M. R. Gary and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016.

2019 27th European Signal Processing Conference (EUSIPCO)


