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Abstract—Nowadays, a great part of music consumption on
music streaming services are based on playlists. Playlists are still
mainly manually generated by expert curators, or users, process
that in several cases is not a feasible with huge amount of music
to deal with. There is the need of effective automatic playlist
generation techniques. Traditional approaches to the problem
are based on building a sequence of music pieces that satisfies
some manually defined criteria. However, being the playlist
generation a highly subjective procedure, to define an a-priori
criterion can be an hard task in several cases. In this study
we propose an automatic playlist generation approach which
analyses hand-crafted playlists, understands their structure and
evolution and generates new playlists accordingly. We adopt
Recurrent Neural Network (RNN) for the sequence modelling.
Moreover, since the representation model adopted to describe
each song is determinant and is also connected to the human
perception, we take advantages of Convolutions Neural Network
(CNN) to learn meaningful audio descriptors.

Index Terms—automatic playlist generation, deep learning,
machine learning, music recommendation, music organization

I. INTRODUCTION

In today music fruition scenario, where the most of music
consumption happens through music streaming, playlists have
an important role. From one side, playlists are one of the
most valuable solutions for both users and content providers
to aggregate songs, from the other side they are an effective
way for music discovery. A great amount of users, indeed,
relies on playlists to discover new music they may like. For
example Discover Weekly or Release Radar playlists by Spo-
tify, reached nearly 100 millions followers, with a consequent
exponential growing of interests by the music industry.

As far as content providers is concerned, most of the
available playlists are still manually created by curators. Even
if we underline the importance of the involvement of experts,
the manual creation process has some important issues [1].
First, it is a highly time consuming and challenging task, due
either to the required level of music expertise and to the vast
size of the available music contents. Secondly, it does not
allow to generate playlists that are specifically personalised
on single users preferences. Finally, manual creation tends to
promote well-known song, since curators will hardly reach
little know musicians. These are the reasons why automatic
playlist generation has become one of the most challenging
and interesting application of the MIR research field.

A playlist can be defined as a sequence of songs aggregated
in order to satisfy a specific criterion. Traditionally the prob-

lem has been addressed by similarity-based approaches, whose
intent is to construct playlists which are as much homogeneous
as possible with respect to a given set of features [2] [3].
However, users are more interested in the evolution within
the sequence of songs rather then their uniformity [4]. In
order to take into account the user preferences, other methods
exploit collaborative filtering techniques [5] [6]. Nonetheless,
these approaches are not always applicable when it comes to
recommend new items, an issue known as cold-start problem
[7] [8].

However, it is very hard to define an effective set of criteria
that is valid for a general application since they can vary by
task to task and they can be either very objective (uniformity
of the genre) or very subjective (user taste). For this reasons,
according to McFee et al. [9], to learn the criteria from
the analysis of human-crafted playlists would result in more
effective and general methods. At this purpose, McFee et al.
exploits methods used in language modeling and [10] [11]
uses Markov chains to model the transitions between songs
through a probabilistic formulation.

To better match the human playlist creation process the
use of techniques devoted to emulate the human thinking
would be more effective. For this reason, some studies using
Deep Neural Networks in the context of automatic playlist
generation have been presented [12]. In [8] the authors use
Recurrent Neural Networks (RNN) for playlist continuation
by the analysis of the last song in the sequence. [13] uses
Convolutional Neural Network (CNN) to learn a meaningful
representation of the song and to classify the piece as belong-
ing or not belonging to a specific playlist.

In this study we evolve the works in [8] [13]. Being an
analysis of manually-crafted playlists, in order to mimic our
perception, we use CNN to learn a feature representation for
each song. We then provide these features as input for an RNN
devoted to model the tracks relationships underlying their
corresponding playlist’s structure, which defines the playlist
evolution. Unlike [8], in the playlist continuation task our
approach take advantages of long-term analysis. This means
that the whole playlist affects the prediction of a new song
rather than just the tail.

II. PROBLEM STATEMENT

Playlists are defined as sequences of songs described trough
a specific Background Knowledge all belongings to a music
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Fig. 1: Automatic playlist generation model.

library and grouped according to a given criterion or Target
Characteristic.

The Target Characteristics are the properties the playlist
should have in order to be considered ”well-built”. These
characteristics are really dependent on the purpose of cre-
ation of the playlist. Examples of Target Characteristics are
constraints on genre or mood of the music, match to one or
more keywords, homogeneity or novelty with user’s listening
history. Of course, these characteristics can be objective or
strongly subjective, hence it is not always straightforward to
define them in formal terms.

The Background Knowledge is a set of descriptors of the
considered songs that allows to verify if the given criterion, i.e.
the Target Characteristic, has been respected. This information
can be of different type, like audio signal features, metadata
or usage data, and its formulation will be dependent on the
specific playlist creation purposes. For example, if the creation
purpose refers to the audio content, like constant rhythm
intensity, the Background Knowledge should be comparable
content-based descriptors, like rhythmic features extracted
from audio signal of the tracks. If instead the criterion is
the year of release of the songs, the Background Knowledge
can be extracted from metadata of the songs, that usually
includes this information. The Background Knowledge should
be designed in order to be enough expressive to allow the
verification of satisfaction of Target Characteristics. Regarding
content-based audio features, to enhance the effectiveness of
the description is possible to combine classic signal processing
with deep learning architectures, like Convolutional Neural
Networks. These methods, that will be presented in details
in the next Section, allow to obtain a representation of the
music track which spans different levels of abstraction and is
able to reveal significant patterns.

Given this framework, we can define the task of playlist
continuation as shown in Figure 1. Formally a playlist of
length L can be expressed as a set P = (s0, s1, . . . , sL−1)
where si is the i-th song of the playlist. Given P , the goal
of playlist continuation is to predict ŝL such that the Target
Characteristics are respected by the extended playlist as much
as possible. Playlist generation problem can be seen as a
specific case of playlist continuation. Indeed, a new playlist
can be generated by having one seed song, hence starting with
L = 1, and by applying playlist continuation in a iterative
fashion until reaching the playlist desired length M .

In this work we are interested in designing a playlist
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Fig. 2: The complete schema of the automatic playlist gener-
ation process.

generation or continuation process such that the Target Char-
acteristics match the one that would be generated by human
playlist creation process. In particular we try to embed the
decision-making of curators in the model and replicate the
trend present in human-generated playlist. The solution pro-
posed employs a deep learning architecture, Recurrent Neural
Networks with Long Short-Term Memory cells, that is able to
model evolution of sequences over time. This allows to avoid
a formal definition of Target Characteristics by training the
neural network on hand-crafted playlists. The details on the
RNN and LSTM used in this work will be introduced in the
next Section.

III. PROPOSED APPROACH

Our method for automatic playlist generation involves two
steps: feature extraction from audio content and actual auto-
matic playlist generation, as shown in Figure 2.

On the one side, the feature extraction stage aims at ex-
tracting a representation of the aforementioned Background
Knowledge and hence providing a high-level descriptor of the
audio content that is meaningful for the playlist generation
task. On the other side, the playlist generation step aims at
finding new items from their feature representation that follows
the same Target characteristics.

Feature Extraction. In order to model a playlist generation,
we need to extract a high-level representation of music, which
is close to the way people think of music, such as genre,
mood, or natural language description of the music. Such
representation however would need to address several tasks,
i.e. genre recognition, mood recognition and auto-tagging.

In [14] Keunwoo Choi at al. present a five-layer Con-
volutional Neural Networks (CNN) combined with transfer
learning that is effective to predict mood, genre and audio
events. In particular, the (pooled) output after each layer
provides a compact, multi-level and flexible descriptor for
audio content. For this reason, we use their network for our
work. For an in depth description of the network structure and
training methodology, please refer to [14].

In order to use the feature extraction network, we first
compute a time-frequency representation of the audio signal,
namely the mel-spectrogram, which is a perceptually-relevant
version of the spectrogram and has been proven to be effective
with deep neural networks [14].

As a result of the feature extraction stage, we compute a
F -feature vector si ∈ RF for each song si in the playlists.
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Playlist generation. The playlist generation stage is com-
posed of two steps: first we train a model to recognise the
pattern within a sequence of songs; and once this model is
trained, we use it to generate new items, corresponding to the
playlist continuation.

Given an input playlist P = (s0, s1, . . . , sL−1), we extract
the feature representation and end up with the input matrix
P = [s0, ..., sL−1] ∈ RL×F . The first step is concerned with
modeling the structure and the evolution of the input sequence
in order to predict a coherent playlist which can also be
employed as a suitable continuation. The output of this step
is a sequence of feature vectors that are the best candidate for
the continuation.

A playlist can be seen as a sequence of elements. For
this reason, in this study, we use a RNN for modeling the
playlist sequences and carry out the song prediction step. A
RNN aims at modeling the sequence s0, s1, sL−1 by modeling
the distribution of each step of the sequence P (si|si−1,θ),
with θ the parameters of the model. As its name suggests,
by recurrently unwrapping the formula, we can model each
element of the sequence as a function of its previous elements:

P (si|si−1,θ) = P (si|P (si−1|si−2,θ),θ)

= · · · = P (si|si−1, si−2, . . . , s0),

where in the last step we neglected the nested notation for the
sake of clarity.

In particular, we employ a two-layer RNN architecture
based on long short-time memory (LSTM) cells, which in-
volve several gates that help the model understand what to
”remember” and to ”forget” about the past samples, through
an internal state. LSTM cells are also effective to address
the RNN training issues related to the vanishing gradient and
exploding gradient phenomena [15]. We apply a dropout layer
after each LSTM layer to regularize training and make it more
robust.

Given the input playlist, the RNN emulates its evolution
by predicting a sequence of feature vectors which reflects the
pattern in the input playlist. Formally, given an input playlist
P of length L defined as P = (s0, s1, . . . , sL−1) the RNN
is used to predict a playlist P̂ of the same length which is an
estimate of all the songs’ continuations:

P̂ = (ŝ1, ŝ2, . . . , ŝL−1, ŝL) . (1)

The last song ŝL can be employed as a continuation for P
since it has been predicted by following the input playlist’s
composition logic. This process can be repeated iteratively to
generate a playlist of any desired length M .

In the training phase, we provide a set of input sequences X
and a set of ground-truth sequences Y as the ground truth for
the output. We use X = [s0, s1, . . . , sL−2] as input playlist
and Y = [s1, s2, . . . , sL−1] as desired output. This training
data allows the model to learn the dependencies between the
several playlist’s tracks as

Ŷ = [ŝ1, ŝ2, . . . , ŝL−1] = f([s0, s1, . . . , sL−2]; Θ) , (2)

where Θ are the network parameters.
The network is trained to minimize the mean squared error

between Ŷ and Y, hence making the network prediction closer
to the ground truth.

Once the training phase is complete we can use the network
in a generative way to receive as input the feature representa-
tion of the songs in a generic playlist and predict a sequence
of feature vectors which are the best candidate for continuing
it.

However, such a feature vector may not correspond to an
actual track that the network has seen during training. This
behaviour is in fact desirable, since we want the approach to
be scaled and generalized to new content inserted in the music
library S = {s1, ..., sN}, which is an extremely common
scenario in the music streaming services.

Therefore, given a generic predicted feature vector ŝi, we
continue the playlist with the song sj such that sj is the closest
point to ŝi in S according to the Euclidean distance, which is
coherent with the choice of the MSE as loss function during
training.

Finding the closest point in a F -dimensional space with a
large amount of items, such as the current music libraries, is
a computational expensive process if performed via a linear
scan. Several approaches have been proposed to optimize this
process. In our experiments, we employ a r-tree structure,
which creates overlapping regions of samples and organizes
them as a K-branch tree, achieving logarithmic complexity in
the number of elements [16].

IV. EXPERIMENTAL SETUP AND EVALUATION

For our experiments we employed the Art of the Mix-
2011 (AotM-2011) dataset [17]. AotM-2011 is a collection
of 101,343 hand-crafted playlists meta-data acquired from the
Art of the Mix platform, with an average 19.6 song for each
playlist. The playlists contain a total of 642,118 unique songs
by 227,703 unique artists. We have employed the Spotify Web
APIs in order to extract 30-second audio excerpts representa-
tive of the song sampled at 48KHz. Since the audio excerpts
were not available for every song in the AotM-2011, we
discarded the playlists with one or more missing audio content,
leading to a total number of 44,819 fully-matched playlists. We
extracted the mel-spectrogram for each song by computing the
STFT with NFT = 512 and H = 256 and a triangular mel-
filterbank with 128 bands logarithmically distributed on the
frequency axis. This processing phase has been implemented
using kapre [18] to exploit GPU acceleration.

Each mel-spectrogram is then provided as input for the CNN
architecture, which extracts a feature vector representation for
the signal of dimension 1 x F , where F = 160 is the total
number of features. The resulting vectors are aggregated into
a matrix P of dimension L x F , where L is the playlist’s
length. This process is repeated for every playlist available in
the dataset.

The produced matrixes are used to to train, validate and test
the RNN model. The RNN consists of two LSTM layers each
characterized of 512 neurons. In order to avoid overfitting, we
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Fig. 3: Playlist generation with hidden songs test case results

have added a dropout layer with a dropout factor of 0.2 after
each LSTM layer, i.e. randomly setting to 0 a portion of the
previous cells outputs equal to their 20% during the training
phase. The networks implemented using Keras library [19]
with TensorFlow as back-end.

We have trained the RNN model using the 80% of the 44819
playlists that compose the dataset.

Each playlist of the training set has been divided into
its correspondent input playlist X = (s0, s1, . . . , sL−2) and
desired output playlist Y = (s1, s2, . . . , sL−1). The aim of
our model in the training phase is to generate a prediction
Ŷ = (ŝ1, ŝ2, . . . , ŝL−1) which is as close as possible to the
desired output Y. To measure the prediction error between
Ŷ and Y we have employed the mean squared error (MSE)
as loss function. For the network’s parameters estimation, we
have employed the Adam optimization algorithm [20].

The testing phase has been computed using the remaining
20% portion of the dataset. We have employed six metrics
to evaluate the quality of the prediction provided by our
model. The metrics can be divided in two groups: performance
metrics and distance metrics. The performance metrics aim to
define how much the model is effective in understanding and
reproducing the playlist evolution. To perform this evaluation
we have chosen the coefficient of determination - (R2) [14],
the explained variance [21] and the Pearson correlation [5].

The distance metrics are employed to compute the accuracy
of the model by evaluating the distance between si and its
prediction ŝi. The chosen metrics are the root mean square
error [22], the mean absolute error [23] and the median
absolute error [24].

With the goal to evaluate our method in playlist continuation
scenario, we used two test methodologies: playlist generation
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Fig. 4: Playlist continuation with seed songs test case results.

with hidden songs and playlist continuation with seed songs.
Playlist generation with hidden songs. The first methodol-

ogy aims to measure the correctness of the model prediction Ŷ
with respect to the ground truth playlist Y when an increasing
portion of the input playlist X is hidden to the model. In other
words, by iteratively provide as input a shorter version of X,
we decrease the provided amount of information. This allows
us to evaluate the robustness of the method. To carry out this
test we have defined a hidden songs percentage β varying
from 0% to 70%. In order to compare Ŷ with the ground
truth Y, we add to the input playlist the last predicted feature
vector, repeating the model prediction process until Ŷ shares
the same length of Y.

In order to provide an overall evaluation of the method,
given a β we firstly performed the prediction for each playlist
in the test set. We then retrieved the closest feature vectors
employing the r-tree structure and finally we computed the six
metrics to each playlist generated by the model with respect
to its ground-truth. The overall evaluation is obtained as the
average along the playlists for each metric.

For the sake of space we present here only the results related
to R2 and RMSE metrics (figures 3a and 3b). As expected, the
effectiveness of the model decreases as the number of hidden
songs increases. This is due to the fact that at each iteration
of the test, i.e. for each value of β, we reduce the information
provided to the model regarding the desired evolution and
characteristics of the playlist. Nonetheless, the differential is
very low ever for low β values.

Playlist continuation with seed songs. The second testing
methodology is concerned with the evaluation of the playlist
continuation performance of our model. Given a number of
seed songs ns varying from 1 to 10, for each input playlist X
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of the test dataset we provide the first ns songs as input of
the model, which outputs a playlist of the same length. From
this output playlist we take the last predicted feature vector,
which represents the song chosen as continuation for the input
seed songs. From this prediction we firstly retrieve the closest
feature vector in the dataset using the r-tree. Then, we compare
this predicted feature vector ŝns−1 with the feature vector
sns−1 at the same position in the ground truth Y . For the test
purposes we have evaluated the model performance for the
one prediction, namely the one step ahead continuation and
two predictions, the two steps ahead continuation, repeating
the test for a number of seed songs varying from 1 to 10. We
present here only the results related to Pearson correlation
ρ and the mean absolute error MAE (figures 4a and 4b.
The increase of the amount of seed songs allows the model
to better understand the playlist evolution, which causes an
improvement of the model performance.

V. CONCLUSIONS

In this work we presented a content-based approach for the
automatic playlist generation task. Our approach is based on
a RNN that models the sequence of songs in a playlist as the
evolution over time of its feature representation. The feature
representation is learnt by means of CNNs.

The model is able to generate or continue playlists following
the learned structure and evolution. We evaluated our approach
using the Art of the Mix-2011 playlist data-set through quality
and error metrics under two scenarios: playlist generation with
hidden songs, playlist continuation with seed songs.

The model achieves good results over all the considered
metrics, showing a good level of resilience to reduction of
the input (first scenario) and the capability of increasing
the scope of prediction to two steps ahead the current song
(second scenario). In particular, the low decrease in terms of
performance and error of the two steps ahead prediction makes
us confident in the model ability of learning the long term
dependencies between the songs in a playlist. With respect to
[8] we did not experienced overfitting issues, possibly due to
the larger size of the employed dataset.

The model is able to start a trend even starting by a single
seed song; however in this case it is hard -even for a music
curator- to understand the desired target characteristics of
the playlist. In future work, we intend to investigate user’s
preferences allowing them to ”steer” and customize the playlist
generation. Moreover, we would like to use the prediction
power of the model to sort songs in a collection, i.e., find the
best way to present a set of songs in a sequence. This would
improve the perceived quality of recommendation systems,
such as the Discover Weekly playlist.
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