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Abstract—Calibration is instrumental to realize the full perfor-
mance of a measurement system. In this contribution we consider
the calibration of a uniformly linear array antenna where we
assume each antenna element has an unknown complex gain.
We present an algorithm which can be used to calibrate the
array without full knowledge of the environment. Particularly,
if the number of signal sources are known we show that we
can determine the individual unknown antenna gains up to
an ambiguity parametrized by a single complex scalar. If the
ratio of the complex gains between two consecutive elements is
also known, this ambiguity is resolved. The method is based
on determining the antenna calibration parameters such that
the Hankel matrix of the array snapshots has a given rank. A
numerical example illustrates the performance of the method.
The numerical results suggest that the method is consistent in
SNR.

Index Terms—Estimation, Optimization, Calibration, Linear
antenna arrays, Direction-of-arrival estimation

I. INTRODUCTION

Array antennas play an instrumental role in modern radar
and communication systems. In this contribution we consider
the technical problem of calibrating an antenna array to
mitigate the effects of deviations in performance between
different antenna elements.

The problem of estimating the unknown gains in a linear
array in a blind fashion, i.e. without knowing the directions
to the active signal sources is called auto-calibration. We can
also regard this as a joint estimation of the array gain and
the directions to the signal sources. This problem has been
treated by many authors over the years [1]–[6] with various
assumptions on the array and the target properties.

In this contribution we describe an auto-calibration method
which is based on the low-rank properties of a Hankel ma-
trix built from the snapshot data. This matrix is explored
in Kung’s subspace method [7] [8] for direction of arrival
(DOA) estimation. The Hankel matrix is parametrized with the
unknown calibration parameters. The calibration parameters
are determined by minimizing a cost function involving the
rank of the Hankel matrix. If the number of active targets are
known, the unknown calibration parameters can be determined
up to an inherent ambiguity involving only a complex scalar.
If we assume the complex ratio between the true gain of two
consecutive antenna elements to be known, both the direction
of arrivals and the gain of all the antenna array elements can be
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recovered. The contributions of the paper are the following.
We give a precise and short theoretical background of the
problem based on system theory and give conditions for the
possible ambiguous solutions. Compared to [1] and [6] we
do not assume the sources to be uncorrelated. We do not
assume any statistical properties regarding the unknown gains
in contrast with the method proposed in [2].

After the problem formulation in Section II we present some
system theory results in Section III. The calibration method is
outlined in Section IV and numerical illustrations are given in
Section V. The paper is summarized in Section VI.

A. Notation

By (·)T and (·)∗ we denote the transpose and the Hermi-
tian transpose respectively. The Hadamard product � is the
element wise matrix product, i.e. [A�B]ij = [A]ij [B]ij . For
column vectors a and b, we have a � b = diag(a)b, where
diag(a) is a diagonal matrix with the elements in vector a on
the diagonal.

II. PROBLEM FORMULATION

We consider the standard formulation by assuming P targets
are emitting narrowband signals which are sensed by a uniform
linear array (ULA) with M elements. After IQ demodulation
the measured vector signal at snapshot n at the array can be
modeled as [9]

ỹ(n) = y(n) + v(n) =
P∑
p=1

a(θp)xp(n) + v(n)

where θp is the direction of the arrival, a(θp) ∈ CM is
the steering vector, θp is the direction of arrival, xp(n) is
the complex amplitude for target p, and v(n) is an assumed
additive noise signal at snapshot n. Here y(n) denotes the
noise free snapshot vector. In the derivation of the method
below we assume noise free data and will return to the more
relevant case with noise present in the numerical evaluation
of the calibration method.

Due to manufacturing inaccuracies and electromagnetic
effects the array steering vector a(θp) is expressed as

a(θp) = g � a0(θp) (1)

where a0(θp) is the ideal steering vector and g =[
g1, g2, . . . , gM

]T ∈ CM is the static array gain and we
assume gi 6= 0 for all i.

The problem we address in this paper can be stated as:
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Given N snapshots {ỹ(n)}Nn=1 collected under a
static scenario where P targets are active but with
unknown directions of arrival and the knowledge
of the ratio between the antenna gain for two con-
secutive antenna elements, determine the unknown
antenna gain vector g and the direction of arrivals
θp, p = 1, . . . , P .

In a static scenario the direction of arrivals are constant during
the period when all the snapshots are collected.

A. Uniform linear array

The antenna array is assumed to have a linear shape and
equal spacing ∆ between the antenna elements. Assume
target p is located at a direction θp relative to the direction
perpendicular to the extent of the antenna array. Define the
spatial frequency ωp , 2π∆

λ sin θp, where λ is the wavelength
of the incoming signals. The steering vector for target p can
then be described as

a0(θp) =
[
1 ejωp ej2ωp . . . ej(M−1)ωp

]T
.

With the definitions

A , diag([ejω1 , ejω2 , . . . , ejωP ]), c ,
[
1 . . . 1

]
(2)

and
x(n) ,

[
x1(n) x2(n) . . . xP (n)

]T
(3)

we obtain for antenna element at position m

ym(n) = gmcAm−1x(n) (4)

By collecting the antenna responses from all the snapshots at
element m we have

ym ,
[
ym(1) ym(2) · · · ym(N)

]
= gmcAm−1X (5)

where
X ,

[
x(1) x(2) · · · x(N)

]
(6)

We note that if gm = 1 for all m then ym can be seen as
the Markov parameters for a linear system described by the
triple (A,X, c). We will rely on this fact in the derivation
that follows. Finally we note that antenna gain g and the
signal amplitude matrix X in the model (4) cannot be uniquely
separated as an arbitrary non-zero complex scalar value can be
moved between them with identical ym. Here we fix g1 = 1
to remove this ambiguity.

III. PRELIMINARIES

A. Some results from systems theory

Before proceeding we recall some well known results from
linear systems theory [10]. We will here discuss properties of
the matrix triple (A,B,C), where A ∈ Cn×n,C ∈ Cp×n, and
B ∈ Cn×m defining a sequence yi , CAi−1B ∈ Cp×m for
all i = 1, 2, . . .. The triple (A,B,C) is called a realization of
order n of the sequence {yi}∞i=1. The extended controllability
matrix of order s is

Cs(A,B) ,
[
B AB · · · As−1B

]
(7)

and the extended observability matrix of order s is

Os(A,C) ,
[
CT (CA)T · · · (CAs−1)T

]T
(8)

A realization of the sequence {yi}∞i=1 is minimal if there exists
no other realization of the sequence that has a lower order. The
following result is instrumental and can for instance be found
in linear systems theory literature e.g. [10], [11].

Lemma 1 A realization (A,B,C) of order n is minimal if
and only if rankCn(A,B) = rankOn(A,C) = n.

Trivially we note that rankOs(A,C) = n for all s >
n if rankOn(A,C) = n. Also, by the Cayley-Hamilton
theorem, if rankOs(A,C) = n for some s > n then
rankOn(A,C) = n. Dual results hold for the controllability
matrix.

If we arrange the first s+ r− 1 samples in the sequence yi
as a block Hankel matrix we obtain

Ys,r =


y1 y2 · · · yr
y2 y3 . . . yr+2

...
...

...
...

ys ys+1 · · · ys+r−1

 ∈ Csp×rm. (9)

The Hankel structure implies that the obtained matrix has
the same block elements on all anti-diagonals. The following
result ties together the minimality of a realization and the rank
properties of the associated Hankel matrix. We formulate the
result for the row vector case, i.e. p = 1 and arbitrary m.
The corresponding result for the case when p > 1 is more
involved, see e.g. [11], [12]. For the interested reader we give
a compact full proof of the result.

Theorem 1 Consider a sequence of row vectors {yi}2ni=1

and the corresponding block Hankel matrix Yn+1,n+1. Then
rankYn+1,n+1 = n and rankYn,n+1 = n if and only if
there exists a minimal realization (A,B, c) of order n such
that yi = cAi−1B for i = 1, . . . , 2n.

Proof: ⇐) Given the minimal realization (A,B, c)
let Os(A, c) and Cr(A,B) be the extended observabil-
ity and controllability matrices. It is easy to verify that
Os(A, c)Cr(A,B) = Ys,r. Since the realization is minimal
from Lemma 1 both Os(A, c) and Cr(A,b) has rank n for
all s, r ≥ n which imply that Ys,r has rank n for all s, r ≥ n.
⇒) If rankYn+1,n+1 = n, the Hankel matrix Yn+1,n+1 has
a one-dimensional left nullspace so there exists a non zero
row vector x =

[
α ρ

]
such that xYn+1,n+1 = 0 where ρ

is a scalar. Since by assumption rankYn,n+1 = n we have
αYn,n+1 = 0 iff α = 0. Hence it follows that ρ 6= 0 and
without loss of generality we can assume ρ = −1. Clearly[
α −1

]
Yn+1,n+1 = 0 implies the recursion

yn+k =
n∑
i=1

αiyk+i, k = 1, . . . , n (10)
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If we define the order n realization (Ac,Bc, cc) with

Ac =


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

0 · · · · · · 0 1
α1 α2 · · · · · · αn

 , (11)

cc =
[
1 0 · · · 0

]
, and BT

c =
[
yT1 yT2 · · · yTn

]
we

note that Ac is a companion matrix. It is easy to verify
that yi = ccA

i−1
c Bc for i = 1, . . . , 2n by employing the

recursion (10). By construction, On(Ac, cc) = I which imply
rankOn+1(Ac, cc) = n. Since by assumption Yn,n+1 = n
and by construction On(Ac, cc)Cn+1(Ac,Bc) = Yn,n+1

it follows that rankCn+1(Ac,Bc) = n and hence
rankCn(Ac,Bc) = n which implies that the realization
(Ac,Bc, cc) is minimal.

The realization of a sequence yi is not unique. Take an
arbitrary non-singular T ∈ Cn×n then (A,B,C) and
(T−1AT,T−1B,CT) will be two realization that realize the
same sequence since CT(T−1AT)i−1T−1B = CAi−1B.
It is well known that the set of eigenvalues for the matrix
T−1AT and A is identical since the matrices are similar [10].

Theorem 2 Assume the array is ideal, gT =
[
1, . . . , 1

]
, the

P targets have distinct spatial frequencies ωp and that for at
least one snapshot n′ each target p, xp(n′) is non-zero. Then
the realization (A,X, c) given by (2) and (6) is minimal and
rankYP+1,P+1 = rankYP,P+1 = P .

Proof: A closer look at OP (A, c) reveal that it is a Vander-
monde matrix with P distinct generators ejωp which implies it
has full rank P [13]. Consider the matrix CP (A,X) and select
only the columns corresponding to the non-zero snapshot
x(n′). Collect these columns in a new matrix Z preserving
the order. Let u be the element wise inverse vector to x(n′),
i.e. x(n′)�u =

[
1, 1, . . . , 1

]T
. Then we notice that diag(u)Z

is also a Vandermonde matrix with the same generators as
before and hence has full rank P . Since diag(u) has full rank
by construction we can conclude that Z has full rank P and
hence also CP (A,X). The result now follows by Lemma 1
and Theorem 2.

The result shows that if the array is calibrated the Hankel
matrix will be of rank P . This is the starting point for the
calibration algorithm we describe in the next section.

IV. AUTO-CALIBRATION

We will now introduce the calibration method. The cali-
brated array output is defined by

ycm , hmym, m = 1, . . . ,M (12)

where hm ∈ C compensates for the deviations from the
ideal unit antenna gain. (Note that optimal calibration implies

hmgm = 1 for m = 1, . . . ,M .) Given h =
[
h1, . . . , hM

]
and

the snapshot data, define the calibrated Hankel matrix

Yc
s,r(h) =


yc1 yc2 · · · ycr
yc2 yc3 . . . ycr+2
...

...
...

...
ycs ycs+1 · · · ycs+r−1

 ∈ Cs×rN . (13)

By assumption g1 = 1 so we fix h1 = 1. We now seek values
of the other elements in the vector h. By Theorem 2 it is clear
that if hmgm = 1 for m = 1, . . . ,M , the array is correctly
calibrated, the Hankel matrices satisfy rankYc

P+1,P+1 =
rankYc

P,P+1 = P and the array response is given by a
realization (Â, X̂, ĉ). Furthermore, the eigenvalues of Â are
the same as A in (2) as the matrices are similar. From the
eigenvalues the DOAs can be recovered.

The proposed auto-calibration method proceeds by finding
a calibration vector h that makes the rank of the calibrated
Hankel matrices Yc

P+1,P+1 and Yc
P,P+1 equal to P , the

number of signal sources. A relevant question is if the rank
of the two Hankel matrices can still be P when hmgm 6= 1,
m = 2, . . . ,M . We will investigate if we can obtain solu-
tions where rankYc

P+1,P+1 = rankYc
P,P+1 = P although

hmgm 6= 1, m = 2, . . . ,M . The following theorem provides
two special conditions when this is the case.

Theorem 3 Consider the scenario in Theorem 2 but with
an arbitrary non-zero antenna gain for each element. If the
calibration vector has either of the following two forms:

1) hT =
[
1 g−1

2 β g−1
3 β2 · · · g−1

M βM−1
]

where β ∈
C and β 6= 0

2) hT =
[
h′1 h′2 · · · h′P 0 · · · 0

]
where h′PyP 6= 0

and h′m ∈ C for m = 1, . . . , P − 1 are arbitrary.
then the calibrated Hankel matrix satisfies rankYc

P+1,P+1 =

rankYc
P,P+1 = P . The system matrix Â for the correspond-

ing realizations will have eigenvalues:
1) λi = βejωi for i = 1, . . . , P
2) λi = 0 for i = 1, . . . , P .

Proof: Case 1): Assume (A,X, c) realize the antenna re-
sponse using the correct calibration, i.e. g−1

m ym = cAm−1X,
for m = 1, . . . ,M . Then the calibrated response is hmym =
βm−1cAm−1X = c(βA)m−1X which shows that the real-
ization (βA,X, c) will realize the sequence hmym. Finally,
the eigenvalues of βA are βλi where λi are the eigenvalues
of A and the result follows.
Case 2) The calibration vector will yield a Hankel matrix
Yc
P+1,P+1 which is zero for all matrix elements where the

sum of the row and column indices is larger than P + 1. If
h′PyP 6= 0, trivially rankYc

P+1,P+1 = rankYc
P,P+1 = P .

If a realization is constructed, as in the proof of Theorem 1,
the vector α at the bottom of the companion matrix (11) will
be a zero vector. This implies that AP

c = 0, i.e. the matrix is
idempotent and all eigenvalues are zero.

The theorem gives sufficient conditions on the calibration
vector hm such that the set of equations

hmym = hmcAm−1B = c̃Ãm−1B̃, m = 1, . . . ,M (14)

2019 27th European Signal Processing Conference (EUSIPCO)



has a solution where (Ã, B̃, c̃) is a minimal realization of
dimension P . If the ratio between the true gain of two
consecutive antenna elements are known, the unknown scalar
β in Theorem 3 Case 1 can be resolved. Without loss of
generality assume the gain ratio is given by γ = g2/g1 = g2

since g1 = 1. Hence we obtain that β = h2γ. With this
information the elements of the calibration vector is modified
as ĥm = hmβ

1−m, m = 2, . . . ,M , removing the previous
ambiguity.

A. The calibration algorithm
The desired calibration vector h can be found as the solution

to the following optimization problem:

min
h,L
‖L− Ŷc

P+1,P+1(h)‖2F

s.t. rankL = P, h1 = 1
(15)

This problem is NP-hard due to the rank constraint, but could
be resolved using a a relaxation method, e.g. the nuclear
norm, e.g. [14], could be used. A difficulty with the nuclear
norm relaxation is that an extra hyperparameter needs to be
determined in order to obtain the correct rank P . Here we
employ a heuristic method for solving (15) that does not
involve searching over additional parameters. We suggest to
iterate between solving for L and h. If h is kept fixed the so-
lution to the problem in (15) is given by the truncated singular
value decomposition [15]. If L is kept fixed the problem is an
ordinary least-squares problem since Yc

P+1,P+1(h) is linear
in h.

Algorithm 1
1) Initialize h =

[
1, 1, . . . , 1

]
2) Determine the SVD

YP+1,P+1(h) =
[
U1u2

] [S 0 0
0 σP+1 0

]V∗1v∗2
V∗3

 (16)

with S = diag(σ1, . . . , σP ) ∈ RP×P where σ1 ≥ . . . ≥
σP ≥ σP+1 are the singular values and set L = U1SV

∗
1 .

3) Project L to the space of block Hankel matrices.
4) Solve the least-squares problem

min
h
‖L−Yc

P+1,P+1(h)‖2F (17)

and scale h := h/h1.
5) Repeat 2-4 until the σP+1/σP is below some set thresh-

old.
6) Set β = h2γ and adjust the calibration vector ĥm =

hmβ
1−m, m = 2, . . . ,M

Step 4 in Algorithm 1 separates into M scalar least-squares
problems. If a solution to the original problem (15) has been
found then rankYc

P+1,P+1(h) = P and hence σP+1 = 0.
This property is the basis for the stopping criteria in Step 5).
Note that after Step 6) we still have rankYc

P+1,P+1(ĥ) = P .
In all numerical examples investigated, the procedure in

Steps 1-5) in Algorithm 1 has resulted in solutions where
hm ≈ g−1

m βm−1, i.e. Case 1) in Theorem 3, often with β close
to 1. The fact that the numerical experimentation has not seen
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Fig. 1. RMS error for estimated spatial frequencies versus variance of the
noise.

solutions according to Case 2) can perhaps be explained by the
way we initialize the algorithm, i.e. hm = 1 for all elements.
Based on the outcome of the numerical experimentations we
conjecture that if we solve the problem in (15) for noise free
data we end up with a solution where

hm = g−1
m βm (18)

for some non-zero β, i.e. the solution to (17) identifies the
unknown calibration gain up to the ambiguity βm. With the
information γ = g2/g1 used in Step 6) in Algorithm 1 this
ambiguity is removed.

B. DOA estimation
We can use the calibrated array response derived according

to Algorithm 1 to perform an estimate of the directions
of arrival with an arbitrary DOA estimation algorithm, e.g.
maximum-likelihood, Kung’s method or ESPRIT [7], [16]–
[18]. Without the information γ = g2/g1, the ambiguity in
the calibration will lead to a perturbation in the estimated
direction of arrival. If the true spatial frequencies are ωp, p =
1, . . . , P then the eigenvalues for any A matrix realizing
the array response for an correctly calibrated array will be
ejωp , p = 1, . . . , P . If the calibration algorithm (steps 1-5)
yields a solution with β 6= 1 the corresponding eigenvalues of
a realization will, according to Theorem 3, be |β|ej(ωp+arg β).
All spatial frequencies have thus been shifted by the same
amount, given by arg β. This implies that the difference
between any pairs of estimated spatial frequencies is equal
to the true difference. We can interpret this ambiguity as
an uncertainty in the direction of the array relative to the
directions to the targets.

V. NUMERICAL ILLUSTRATION

In this section we illustrate the performance of the outlined
method. We use Monte Carlo simulations with the following
setup:
• A uniform linear array with M = 16 elements.
• Two targets with relative spatial frequencies ω1 = −2π ·

0.122 and ω2 = 2π · 0.22 (unknown to the algorithm).
• Array responses from N = 100 snapshots are generated.
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• A zero mean complex circularly symmetric Gaussian
noise with variance ranging from 10−4 to 10−1 is added
to the noise free array response.

• For each Monte Carlo run an antenna gain vector is gener-
ated by adding a zero mean complex circularly symmetric
noise with variance 0.2 and a uniform distribution to the
ideal unit gain.

• The performance is evaluated by generating 100 inde-
pendent realizations of the target signals, noise, and the
antenna gains. The sample statistics of the performance
is then evaluated.

• Algorithm 1 is used to estimate the unknown calibration
vector ĥ using information γ = g2/g1. Kung’s algorithm
[7] is then used to estimate the two unknown spatial
frequencies using the auto-calibrated data. We compare
this estimate with an oracle calibration where we employ
Kung’s algorithm to array data compensated with the
correct calibration vector. Finally we also compare with
the estimate obtained from Kung’s algorithm by directly
using the uncalibrated raw data.

The result of the numerical evaluation is reported in figures
1–2. In Figure 1 the root mean square (RMS) errors for
the spatial frequencies for the three cases are compared. We
notice that the auto-calibrated case improves the performance
compared to the uncalibrated case but is inferior to the
oracle based estimate. This is natural since the auto-calibration
algorithm needs to estimate additional M − 2 complex values
besides the 2 DOAs. In Figure 2 the RMS of the norm of
the error between the optimal calibration, the auto-calibrated
version, and the uncalibrated case is illustrated. In both figures
we see that the error decreases with improved SNR which
suggests that the method is consistent in SNR, i.e. the RMSE
approaches zero as the SNR increases.

VI. SUMMARY

In this contribution we have presented an algorithm which
can be used to calibrate an ULA without full knowledge of the
environment. Particularly, if the number of signal sources are
known we have shown that we can determine the individual
unknown antenna gains up to an ambiguity parametrized by a

single complex scalar. If the ratio between the complex gains
of two consecutive antenna elements is known, the ambiguity
can be resolved and the calibration as well as the DOAs can
be recovered. The numerical results sugest that the proposed
method is consistent in SNR.
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