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Abstract—Amplitude Modulation Spectrum (AMS) features
can be implemented as a cascade of two filter banks whereas the
filter bandwidths can be optimized for a particular application.
In this work we train AMS-based features using a combination
of a model-based optimization (MBO) approach and feature
selection for full-band DRR and full-band T60 estimation. MBO
replaces the computational complex data-based cost function by
approximating a less complex surrogate model and thus reduces
the time needed for training. We evaluate our approach on
the publicly available ACE challenge corpus and achieve with
only five features the best RMSE in the DRR estimation task
using the single microphone configuration and upper mid-range
performance for T60 estimation. The computational complexity of
our algorithm is much lower than all other submitted algorithms.

Index Terms—DRR estimation, T60 estimation, amplitude mod-
ulation spectrum, model-based optimization

I. INTRODUCTION

Accurate estimation of room acoustic parameters like the re-
verberation time (T60) or the direct-to-reverberant ratio (DRR)
are a challenging tasks. Information about T60 or DRR could
be used in different signal processing algorithms, e.g. for
dereverberation. The reverberation time of a room is defined
as the time in which the acoustic energy density decreases
by 60dB after switching the sound source off and depends in
general on the room size and wall absorption coefficients. The
DRR defines the energy ratio between the energy of the direct
acoustic path to the energy of the remaining acoustic paths.
The ACE (acoustical characterization of environments) chal-
lenge was hosted with a view to compare different algorithms.
The results indicate that state-of-the-art algorithms for T60
estimation mostly relying on decay rates can achieve the
most accurate estimation results. Analytical approaches, e.g.
by Prego et al. [1] and Löllmann et al. [2] outperformed other
proposals in this task. However, DRR estimation performance
in the ACE challenge was dominated by algorithms based on
machine learning approaches. To estimate the DRR Parada et
al. [3] trained a neural network with a set of different input
features, e.g. line spectral frequencies (LSF), zero-crossing

rate, parameters extracted from the power spectrum of long
term deviation and modulation domain features.

Recent work of Xiong et al. [4] demonstrated the successful
use of auditory-inspired acoustic features for room acoustic
parameter estimation. Their approach is based on using tem-
poral modulation features extracted from the time-frequency
representation and on training a multi-layer perceptron (MLP)
neural network for estimating the room acoustic parameters.
In our previous work, we proposed a low-dimensional AMS-
based feature extraction algorithm which we used for acoustic
scene classification [5] and speaker localization [6]. The main
idea is similar to the temporal modulation features used by
Xiong et al. since they are also inspired by the human auditory
signal processing and were successfully used for acoustic
scene classification tasks before [7]–[10].
The proposed feature extraction bases mainly on two succes-
sive filter banks, non-linear operations and a final averaging
step. Since both filter banks use only a small number of IIR
filters the proposed approach is less complex than, e.g. [4]. We
optimized the filter bandwidths of the two filter banks with a
model-based optimization (MBO) method in order to estimate
T60 and DRR. The number of filters we utilized to accomplish
the two tasks differ. The T60 estimation performs better with
a higher number of filters, whereas DRR estimation performs
better with less filters.
In the next sections of this paper, we will introduce our
proposed AMS-based feature extraction and the MBO training
scheme. Then, in Section III we evaluate our proposed ap-
proach on the ACE challenge corpus and present the results.
Section IV concludes this paper with a discussion of these
results.

II. METHODS

A. AMS Feature Extraction

Figure 1 depicts the block diagram of the proposed AMS
feature extraction which differs slightly from the approach we
used for the DCASE challenge 2013 [5]. It mainly consist
of two successive filter banks. Before an input signal x(k)
with length N is fed into the first filter bank with NTF
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Fig. 1: Block diagram of AMS-based modulation-domain
feature extraction.

parallel bandpass filters, it is highpass-filtered such that any
DC components below 25 Hz are removed. The first of the
NTF filter is designed as a lowpass filter with the cutoff
frequency fu1. The following filters are designed as bandpass
filters with lower edge frequencies equal to the upper edge
frequencies of the preceding filter (see Figure 2). The output
of this first filter bank are NTF subband signals xT,i(k) with
different spectral content. These subband signals are rectified
and then lowpass filtered and decimated in the next two steps.
The cutoff frequency fT,s of this lowpass filter is equal to the
highest upper edge frequency of the second filter bank plus a
margin of 40 Hz. The decimation factor is R = b fs

2·fT,s
c, where

fs is the sampling frequency and b·c is the floor operation.
The decimation reduces the number of samples to process and
thus reduces the computational cost. The output of this stage
is an NTF × NR matrix with NR = bNR c. The decimated
subband signals xR,i(n) are then logarithmically compressed
and each frame is normalized to unit variance leading to the
output signals yR,i = [yR,i(1) yR,i(2) . . . yR,i(NR)], which
are arranged into a matrix YTF =

[
yT
R,1 y

T
R,2 . . . y

T
R,NTF

]T
.

The second filter bank block in Figure 1 contains for each
subband signal yR,i, with i ∈ {1, . . . , NTF }, NM parallel
recursive filters and thus contains (NTF ×NM ) filters in total.
The output signals of these filters are denoted by yR,i,j(n)
with j ∈ {1, . . . , NM}. The ordering of the cutoff frequencies
is similar to the first filter bank as depicted in Figure 2. In
the next two steps the (NTF × NM ) subband signals are
rectified, averaged over the frame length and stored in the
vector YMF =

[
yTMF,1 y

T
MF,2 . . . y

T
MF,NTF×NM

]T
with

yMF,((i−1)·NM+j) =
1

NR

NR∑
n=1

|yR,i,j(n)| . (1)

In this work we set the frame duration (NR · R)/fs to 2s.
The feature vector YMF is then fed into a classification
model or regression model. Because of the fact that this
special structure of successive filter banks extract spectral
amplitude modulations of the input signal, we call these

|H|

BW1 BW2 BW3

fu1/fl2 fu2/fl3 fu3fu0 = 0Hz f

Fig. 2: Filter band structure for three filters. fli is the lower
edge frequency of the i-th filter, fui is the upper edge
frequency of the i-th filter, and BWi is the bandwidth of the
i-th filter

features AMS (amplitude modulation spectrum) features. In
this AMS feature extraction the number of tunable parameters
that have to optimized, is NTF − 1 + (NTF ×NM ), namely
the bandwidths of the filters. Any filter design rule could be
used for the filters. In this paper, we use the Butterworth filter
design for the filters in the first filter bank and the Chebyshev
II filter design rule for the filters in the second filter bank.
The bandwidths of these filters are found by a model-based
optimization (MBO) algorithm which is described in the next
section.

B. Model-Based Optimization

Next we describe the training approach of the filter banks
used for the AMS feature extraction in more detail. Using
the AMS features and a classifier we minimize the mismatch
between the estimated class labels and the ground truth class
labels. The tunable parameters are the bandwidths of the filters
in the filter banks. In the following we will give a brief outline
of the main idea of the used MBO method. For a more detailed
description of MBO we recommend [11], [12].
MBO, like the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES [13]) which we used in our previous work
[5], is an iterative approach used to optimize a black box
objective function. It is used when the evaluation of an ob-
jective function, in our case the classification error depending
on different filter bank parameters, is expensive in terms of
available resources (computational time). MBO constructs an
approximation model, a so called surrogate model, of this
expensive objective function to find the optimal parameters
for a given problem. The evaluation of the surrogate model
is less complex than the original objective function. In initial
experiments, we found that MBO is roughly 1.6 times faster
than the CMA-ES implementation and also resulted in better
solutions for previously investigated acoustic scene classifica-
tion tasks, thus motivating its use in this work.
We can divide MBO in three steps, which will be explained
in the following three subsections.

1) Design a Sampling Plan: We assume a high dimensional
multi-modal parameter space. The goal of the optimization is
to find the point, which minimizes the cost function. The initial
step of the MBO is to construct a sampling plan. This means
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that we determine n points which will then be evaluated by
the objective function. These n points should cover the whole
parameter space and for this we use the Latin hypercube design
[11].

2) Constructing a Surrogate Model: The surrogate model
ĝ(x) should be constructed such that it is a reasonable ap-
proximation of the objective function y = f(x) where x is a
k-dimensional parameter vector. Among available models [11]
we use the ordinary kriging model in this paper:

ĝ(x) = µ+ Z(x) (2)

where µ can be interpreted as a constant global mean and Z(x)
is a Gaussian process. The mean of this Gaussian process is
0 and its covariance is

Cov(Z(x), Z(x)) = σ2ρ(x− x′,Ψ) (3)

with ρ the Matern 3/2 kernel function and Ψ a scaling
parameter. The constant σ2 can be interpreted as the global
variance. Thus, the unknown parameters of this model are µ,
σ2 and Ψ. We have to estimate these parameters by using the
n previously evaluated points y = (y1, ..., yn)T .
The likelihood function is given by

L(y;µ, σ2,Ψ) =

1√
(2π)nσ2ndet(R)

exp

(
− 1

2σ2
(y − 1µ)TR−1(y − 1µ)

)
(4)

with R = (ρ(xi − xj ,Ψ))i,j=1,...,n and det(R) its deter-
minant. From this we can determine the maximum likelihood
estimation of the unknown parameters µ, σ2 and Ψ.

3) Exploring and Exploiting a Surrogate Model: One can
derive the surrogate prediction f̂n(x) and the corresponding
prediction uncertainty ŝn(x) (see [11] [12]) based on the first n
evaluations of f(x). The estimated surrogate function follows
a normal distribution ĝ(x) ∼ N

(
y; f̂n(x), ŝ2n(x)

)
.

Let the actual best value be ymin = min
i=1,...,n

yi = min
i=1,...,n

f(xi).

The improvement for a point x and the estimated surrogate
ĝ(x) is In(x) = max(ymin − ĝ(x), 0). We find the next
point to evaluate by maximizing the expected improvement
xn+1 = arg maxx E(In(x)). This criterion gives us a balance
between exploration (improving global accuracy of the surro-
gate model) and exploitation (improving local accuracy in the
region of the optimum of the surrogate model). In this way the
optimizer does not get stuck in local minima and converges
to a better solution.
After each iteration of MBO the surrogate model will be
updated. Different convergence criteria could be chosen to
determine when to stop evaluating new points for updating
the surrogate model, after e.g., a preset number of iterations
(here 200), or after the expected improvement drops below a
predefined threshold.

C. Classification and Regression

As described in the previous section the MBO is minimizing
the cost of an objective function. In order to optimize the

filter banks, we chose, due to its low computational complexity
and the assumption of Gaussian class densities, the accuracy
of a linear discriminant analysis (LDA) classifier as the cost
function. The LDA does not need any parameter to be tuned,
which simplifies the optimization procedure. In general, any
kind of classification or regression algorithm could be used as
well and also other cost functions (e.g. cross entropy) could
be chosen. After optimizing the filter bandwidths we replace
the LDA with a partial least squares (PLS) regression and
trained a PLS model with the optimized filter banks on the
same training set. Due to the restriction on the filter passbands
(see Figure 2) no gaps in the frequency spectrum are possible
and thus some filter passbands might not be useful and can
be discarded. In order to find the best feature combination we
evaluated all possible combinations and chose the one with the
best estimation results on the training set. The so optimized
filters, the determined feature set and the trained PLS model
were then used for the evaluation of unseen data samples.

III. RESULTS

A. Data

In this paper we evaluate our approach on the ACE chal-
lenge corpus [14]. The task of this challenge was to estimate
the reverberation time T60 and the direct-to-reverberant ratio
from recorded audio files.
The ACE corpus is composed of two sets: a development set
DEV for training and testing an estimator and an evaluation set
EVAL for evaluating the final estimator. Both sets can be freely
downloaded from the ACE challenges web site [14]. These
sets are created with recorded acoustic impulse responses
(AIR) with different microphone configurations which are then
rendered with different speakers, three noise types (ambient,
fan and babble) and different SNR levels. For the DEV
set AIRs from two different rooms and two different room
positions are used, leading to four different DRR values (Table
I) and two T60 times. The SNR levels are set to 0 dB, 10 dB,
and 20 dB. The total number of files is 288.
For the EVAL set AIRs from five different rooms and two
different room positions are used, leading to 10 different DRR
values (Table II). The SNR levels are set to -1 dB, 12 dB and
18 dB. The total number of files is 4500.
The corpus provides audio signals for a number of different
microphone arrays and setups, from which we used the single
channel input with a sampling frequency of 16 kHz at a
resolution of 16bit.
The quality or comparison measures used in the ACE chal-
lenge are: the bias (mean estimation error), mean squared
error MSE, Pearson correlation coefficient between ground
truths and estimations ρ and the real-time factor RTF, which
is defined as the computation time divided by the duration of
processed speech files. Additionally, we provide the root mean
squared error (RMSE). We run our experiments on a PC with
an Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz with 12GB
RAM and Matlab 2017b.
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Room Position DRR [dB] T60 [s]
Building Lobby 1 8.10 0.7389
Building Lobby 2 5.13 0.7655

Office 1 1 10.45 0.3513
Office 1 2 4.34 0.3103

TABLE I: ACE challenge corpus DEV set and ground-truth
parameters [14].

Room Position DRR [dB] T60 [s]
Lecture Room 1 1 12.20 0.6232
Lecture Room 1 2 5.09 0.6657
Lecture Room 2 1 8.94 1.3321
Lecture Room 2 2 4.96 1.2926
Meeting Room 1 1 1.71 0.4501
Meeting Room 1 2 0.94 0.4447
Meeting Room 2 1 5.00 0.3804
Meeting Room 2 2 8.83 0.3831

Office 2 1 2.44 0.4065
Office 2 2 -2.28 0.3985

TABLE II: ACE challenge corpus EVAL set and ground-truth
parameters [14].

B. Filter Bandwidths Obtained from MBO

We use MBO to optimize different filter bank configurations
as depicted in Table III on the DEV set. For the T60 estimation
task the best filter configuration was found for NTF = 4
time-domain filters and NM = 5 modulation domain filters
which all of are sixth-order IIR filters. Thus, this 4× 5 filter
bank configuration extracts 20 features for each 2s segment.
In order to find the most contributing and also the best
features leading to the best performance on the DEV set, we
evaluate all 220 possible feature combination. This brute-force
search determined five features leading to the best estimation
result. The MBO of NTF = 4 and NM = 5 filter bandwidths
took ∼ 8h for 200 iterations.
Similar to T60 estimation, we optimized different filter
configurations for the DRR estimation task. The best filter
configuration on the DEV set was obtained with NTF = 3
time-domain filters and NM = 2 modulation domain filters,
which all off are sixth-order IIR filters. With this 3× 2 filter
configuration we extracted 6 features for each 2s segment.
We evaluated all 26 possible feature combination and found
that five features contributed to the best DRR estimation
result. The MBO of NTF = 3 and NM = 2 filter bandwidths
took ∼ 5h for 200 iterations.

C. Partial-Least Square Regression

A PLS regression model was trained on the DEV data
with the best filter parameters obtained from the MBO and
applied on the EVAL data. The results for T60 and DRR
estimation on the EVAL set are shown in Table IV and Table
V. Among the submitted approaches in the T60 estimation task
the proposed approach ranks in the upper mid-range with an
RMSE of 0.345s, a bias of 0.104s and a correlation coefficient
ρ = 0.390 [14]. Due to the low computational complexity of

#Filters Bias [s] MSE RMSE [s] ρ
3x2 0.00 0.0151 0.123 0.814
3x3 0.00 0.0287 0.170 0.598
4x2 0.00 0.0337 0.184 0.497
4x4 0.00 0.0133 0.116 0.838
4x5 0.00 0.0131 0.115 0.840
5x5 0.00 0.0267 0.166 0.619

TABLE III: T60 estimation results on the DEV set of the ACE
challenge corpus with different filter configurations.

#Filters Bias [s] MSE RMSE [s] ρ
3x2 -0.418 0.301 0.548 0.141
3x3 0.0969 0.145 0.381 0.0425
4x2 0.135 0.138 0.371 0.2047
4x4 0.142 0.137 0.370 0.256
4x5 0.104 0.119 0.345 0.390
5x5 0.0471 0.116 0.341 0.271

TABLE IV: T60 estimation results on the EVAL set of the
ACE challenge corpus with filter configurations optimized on
the DEV set.

our algorithm, we achieve a RTF value of 0.00469. The T60
estimation error is depicted in Figure 3. It can be seen that
the two both highest T60 conditions have the largest absolute
errors. A reason for this could be that such values were not
present in the DEV set (see Table I).
Figure 4 depicts the DRR estimation on the EVAL set.
Obviously, for low DRR values the estimation error is positive
and for higher DRR values negative. The best estimation
accuracy is obtained for DRR values around 5 dB. Compared
to results submitted to the ACE challenge for DRR estimation
we rank third best in terms of MSE. The corresponding RMSE
is 3.74 dB. In comparison to other submitted algorithms it
also has a low bias of -0.199dB, the sixth best correlation
coefficient with ρ = 0.462, and the best RTF with 0.0027 as
shown in Table V. Our algorithm scores better than all other
submitted algorithms using the single channel microphone
configuration for this estimation task in terms of MSE, bias,
and RTF values.

IV. DISCUSSION AND CONCLUSION

In this paper we show that the presented AMS-based fea-
ture extraction algorithm, which was used for acoustic scene
classification and source localization before [5], [6], can also
be used for T60 and DRR estimation tasks. For both tasks we
find that the estimation performance depends on the filter bank
configuration. For instance the DRR estimation works better
with a lower number of filters and the T60 estimation with a
slightly larger configuration. The filter banks needed for the
AMS feature extraction are optimized by an MBO algorithm
on the DEV set.
We evaluated our proposed approach for T60 and DRR es-
timation on the publicly available ACE challenge corpus in
order to compare it with other proposed algorithms. With an
RMSE of 3.74 dB for DRR estimation we outperform the
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#Filters Bias [dB] MSE RMSE [dB] ρ RTF
3x2 -0.199 13.99 3.74 0.462 0.00274

TABLE V: DRR estimation results on the EVAL set of the
ACE challenge corpus.
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Fig. 3: T60 estimation error on the EVAL set of the ACE
challenge corpus.

submitted algorithms based on neural networks (3.83 dB [3]
and 3.99 dB [15]) and all single-channel algorithms and obtain
the third best RMSE value with only 5 features. However,
the correlation coefficient of 0.462 is slightly lower than the
neural-network-based algorithms (0.558 [3] and 0.556 [15]),
and thus is the fourth best correlation coefficient among the
algorithms using the single channel microphone configuration.
For T60 estimation we rank in the upper mid-range of perfor-
mance with an RMSE of 0.345 s and a correlation coefficient
of 0.39 with just 5 features. The RTF outperforms all other
submitted algorithms in both estimation tasks significantly.
Compared to other known AMS-based feature extraction algo-
rithms [4], [7]–[10] our approach is computationally signifi-
cantly less complex. The low computational complexity makes
our AMS-based approach suitable for low-resource and also
real-time systems. In this paper we also show that the AMS-
based feature extraction framework can be easily adapted for
the estimation of room acoustic parameters with its regular
but flexible structure. Similarly to deep-neural-network-based
structures determining the best filter bank configuration can
be a challenging task and it depends on the given application.
However, because of the low number of parameters a global
optimization approach such as MBO can be employed.
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[5] S. Ağcaer, A. Schlesinger, F. Hoffmann, and R. Martin, “Optimization of
amplitude modulation features for low-resource acoustic scene classifica-
tion,” in 2015 23rd European Signal Processing Conference (EUSIPCO),
Aug 2015, pp. 2556–2560.
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