
Understanding Support Vector Machines with
Polynomial Kernels

Rikard Vinge
Department of Electrical Engineering

Chalmers University of Technology
Gothenburg, Sweden

vinge@chalmers.se

Tomas McKelvey
Department of Electrical Engineering

Chalmers University of Technology
Gothenburg, Sweden

tomas.mckelvey@chalmers.se

Abstract—Interpreting models learned by a support vector
machine (SVM) is often difficult, if not impossible, due to
working in high-dimensional spaces. In this paper, we present
an investigation into polynomial kernels for the SVM. We show
that the models learned by these machines are constructed from
terms related to the statistical moments of the support vectors.
This allows us to deepen our understanding of the internal
workings of these models and, for example, gauge the importance
of combinations of features. We also discuss how the SVM with a
quadratic kernel is related to the likelihood-ratio test for normally
distributed populations.

Index Terms—Interpretation, Support Vector Machine, Poly-
nomial Kernel, Statistical Moments, Likelihood Ratio Test,
Quadratic Discrimination

I. INTRODUCTION

Support vector machines (SVMs) are attractive due to their
many useful properties, including efficient training algorithms
and proven performance on a multitude of different kinds of
real-world inference problems. What they lack, however, is
an ability to provide understandable details on the trained
models. This lack of interpretability is common among many
of the popular machine learning algorithms of today. In the
hunt for better performance, algorithms that are flexible and
generalize well are often preferred over algorithms whose
inner mechanisms can be easily understood.

On the other end of the spectrum are simple, but often
remarkably effective [1], learners such as Linear or Quadratic
Discriminant Analysis (LDA and QDA, respectively), decision
trees, naive Bayes classifiers, linear regression, and generalized
additive methods [2]. Although they may not yield state-of-
the-art performance in many applications, they offer the means
to understanding the trained models and give explanations to
how they arrived at a particular output.

Throughout the years, much work has been put into defin-
ing interpretability of machine learning models [3]–[5] and
designing methods that provide interpretation to models from
any learning algorithm [6]–[9]. Learner-specific interpretation
models have been developed for many different kinds of
machine learning methods, e.g. for artificial neural networks
[10]–[13], random forests [14], and SVM [15].

In this paper, we investigate the structure of solutions
produced by the SVM with polynomial kernels and show
that the coefficients of the polynomial decision functions are

related to the statistical moments of the support vectors. This
allows for a deeper understanding of the SVM solution in
terms of, for example, correlation between elements of the
support vectors.

Specifically, we find a relationship between the model
learned by SVM with quadratic kernels and QDA, with its
basis in the likelihood ratio test. This relationship is not
obvious from the way the two classifiers are constructed. In
the case of the SVM, we directly learn a decision function

f(x) = βTφ(x) + β0
ŷ=+1

≷
ŷ=−1

0,

where ŷ is the predicted class of sample x, from training
data (y1, x1), . . . , (yN , xN ), yi ∈ {+1,−1} and xi ∈ Rp.
Quadratic kernels corresponds to transformations φ(x) with
squared and cross combinations of the elements of x as well
as the elements in x themselves and possibly a constant bias.
For separable problems, the SVM is trained by solving the
optimization function

max
β,β0

M

s.t.
yif(xi) ≥M, ∀i = 1, . . . , N

||β||2 = 1

Here, M denotes the margin of the hyperplane f(x), i.e. the
distance from the hyperplane to the most adjacent training
samples. At this point, the margins can be scaled by scaling
β and for convenience the margin is set to M = 1/||β||2 and
the constraint on ||β||2 is removed. This optimization problem
can be solved easily in its dual formulation [16] and produces
solutions of the form

β =
N∑
i=1

αiyiφ(xi)

with αi > 0 only for samples with yif(xi) = M and
αi = 0 otherwise. This procedure of maximizing the margins
for separable problems minimizes the structural risk [17], [18]
and provides good generalization properties for the SVM. In
the soft-margin version of the SVM, used for non-separable
problems, the structural risk is not necessarily minimized.
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Instead, the bias and variance terms of the classifier are
minimized by balancing the width of the margin with a
penalization of erronous classifications.

In contrast to the SVM, which does not consider the
distribution of the data, QDA assumes normally distributed
data and uses the generalized likelihood ratio test to distinguish
between them. For known distributions, the likelihood ratio
test

L(x) =
P (ŷ = +1|x)

P (ŷ = −1|x)

ŷ=+1

≷
ŷ=−1

γ

has the highest detection rate for any probability of false alarm
[19]. For two normally distributed classes, with means µ+1

and µ−1 and covariances Σ+1 and Σ−1 and the probability
density function

P (x, µ±1,Σ±1) =
exp

(
− 1

2 (x− µ±1)TΣ−1±1(x− µ±1)
)√

(2π)p|Σ±1|
,

the likelihood ratio is

L(x) =
P (x, µ+1,Σ+1)

P (x, µ−1,Σ−1)
.

For simplicity, the equivalent log likelihood ratio test is used
for the normal distributions, in which the decision function
becomes quadratic,

f(x) = xTBx+ bTx+ b0

with

B =
1

2

(
Σ−1−1 − Σ−1+1

)
(1)

b = Σ−1+1µ+1 − Σ−1−1µ−1. (2)

Distributions with unknown parameters are handled by the
generalized likelihood ratio test. Assuming the data of the two
classes are normal, we use the maximum likelihood estimators
for the sample mean µ̂ and sample covariance Σ̂, where

µ̂ =
1

N

N∑
i=1

xi, and

Σ̂ =
1

N − 1

N∑
i=1

(xi − µ̂)(xi − µ̂)T .

Replacing µ and Σ in (1) and (2) with µ̂ and Σ̂, respectively,
is the QDA machine learning algorithm [20], first applied in
[21]. If the covariances are assumed equal, QDA reduces to
LDA. In this case, the decision function is linear, similar to
the one learned by linear SVM.

The remainder of this paper is organized as follows: in
Section II we study the structure of SVMs with a simple
quadratic kernel and in Section III we modify the kernel to
the common polynomial kernel of degree two. The results are
generalized to higher order kernels in Section IV. The paper
is concluded in Section V.

II. SUPPORT VECTOR MACHINES WITH A SIMPLE
QUADRATIC KERNEL

Before looking at the most common quadratic kernel used
today, we start with a simpler kernel stemming from the
quadratic decision function we find in QDA,

f(x) = xTBx+ bTx+ b0

where x ∈ Rp and the coefficients B ∈ Rp×p, b ∈ Rp and b0 ∈
R. Vectorizing and combining the terms gives the equivalent
function

f(x) =

[
vec(B)
b

]T [
x⊗ x
x

]
+ b0.

This is a linear function,

f(x) = βTφs(x) + b0,

in the transformed, quadratic, space

φs(x) =

[
x⊗ x
x

]
= (3)

=
[
x21, . . . , x

2
p, xpxp−1, . . . . . . x1x2, xp, . . . , x1

]T
,

to which we can apply the SVM. The transformation φs(x) is
the simplest quadratic transformation that contains all square-,
cross- and linear combinations of the elements of x. The bias
term b0 is left out of the transformation to keep in line with
the standard formulation of the SVM.

Solving the SVM in the transformed space, φs, yield
solutions of the form

β =

[
vec(B)
b

]
=

N∑
i=1

αiyiφs(xi). (4)

Converting the terms of (4) back to the quadratic and linear
parts of the decision function, we find the coefficients B and
b as

B =
N∑
i=1

αiyixix
T
i (5)

b =
N∑
i=1

αiyixi. (6)

The linear coefficient is identical to that of the linear SVM.
The quadratic coefficient has the equivalent form

B =
∑

{i:yi=+1}

αixix
T
i −

∑
{i:yi=−1}

αixix
T
i . (7)

This is the difference between scaled sample correlation ma-
trices of the support vectors from the two classes, where the
scales are the support vector coefficients, here denoted support
vector correlation matrices. Furthermore, the support vector
correlation matrices are rank deficient if the number of support
vectors are less than the dimension of B, in-line with the
sparseness property of the SVM. The structure of the indefinite
matrix B is similar to that of the corresponding term (1) in
the solution to QDA. Three important differences between the
SVM and QDA solutions are: the inversion of the covariance
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matrices of the QDA; the inverted order of the subtraction of
the SVM; and the fact that QDA uses the covariance while
correlation matrices appear in the SVM solution. For zero-
mean classes, the similarities are greater. We reiterate that
QDA assumes the two classes to be normally distributed and
requires at least p+1 samples per class in order to estimate the
sample covariance matrices. Conversely, the SVM makes no
assumptions on the distribution of the classes and requires only
that support vectors of each class exists, which is guaranteed.

Collecting the terms of the decision function of QDA we
have

f(x) =xT Σ̂−1−1x− µ̂T−1Σ̂−1−1x

−xT Σ̂−1+1x+ µ̂T+1Σ̂−1+1x+ b0

and for SVM

f(x) =xT

 ∑
{i:yi=+1}

αixix
T
i

x+

 ∑
{i:yi=+1}

αix
T
i

x

−xT
 ∑
{i:yi=−1}

αixix
T
i

x−

 ∑
{i:yi=−1}

αix
T
i

x

+b0

Although QDA models the population distributions before
distinguishing them and the SVM learns the decision function
directly, the two functions are similar. One interpretation of
this is that the SVM internally tries to sparsely model the
population distributions as some distribution similar to the
Gaussian, while simultaneously maximizing the margins.

If we look at the margin of the SVM we find

M = 1/
√
||B||2F + ||b||2,

where ||.||F denotes the Frobenius norm. Maximizing the
margins equates to minimizing the sum of the norms of the
two coefficients.

III. THE COMMON QUADRATIC KERNEL

Quadratic decision functions for the SVM are most com-
monly achieved by the kernel function

Kq(xi, xj , r) =
(
xTi xj + r

)2
, (8)

with the corresponding transformation

φq(x, r)
T = (9)[

x21, . . . , x
2
p,
√

2xpxp−1, . . .
√

2x1x2,
√

2rxp, . . . ,
√

2rx1, r
]
.

Solutions to the SVM with this transformation is not as
straightforward to interpret as with the simpler quadratic
transformation, but reshuffling of the terms in (9) to the
same order as in (3) and appending the bias r to the simple
transformation allows us to write

φq(x) =


Ip 0 0 0

0
√

2Ip(p−1) 0 0

0 0
√

2rIp 0
0 0 0 r

[ φs(x)
1

]
.

Here, Ip and Ip(p−1) are the p × p and p × (p − 1) identity
matrices, respectively. Appending the constant bias term, r, to
transformation φs has no effect on the solution of the SVM,
due to the constraint on the support vector coefficients that

N∑
i=1

αiyi = 0.

Converting the solution to the SVM with the common
quadratic kernel back to the original space yields

B =
N∑
i=1

αiyi
(
T ◦

(
xix

T
i

))
(10)

b =
√

2r
N∑
i=1

αiyixi, (11)

where

Tij =

{
1, i = j√
2, i 6= j

(12)

and ◦ denotes the Hadamard product. The quadratic term
now consists of the same difference between support vector
correlation matrices as (5), but scaled element-wise by T , more
clearly seen in the equivalent formulation

B = T ◦
N∑
i=1

αiyixix
T
i .

Expressing the margin in terms of the B and b found from
transformation (3) we find that the bias term r from (8) allows
for control over the relative importance of the quadratic and
linear coefficients in the decision functions,

M = 1/
√
||B||2F + ||b||2 = 1/

√
||T ◦Bs||2F + 2r||bs||2.

Here, Bs and bs are the solutions (5) and (6). Thus, SVMs
solved with the common quadratic kernels relates to QDA
in a similar fashion as the simple quadratic transformation.
The element-wise scaling by T assigns higher importance
on the cross-terms of the support vector correlation matrices,
compared to the diagonal terms. The general conclusions on
the relationship between the SVM and QDA holds for the
common quadratic kernel as for the simpler, but the similarity
between the quadratic terms in the two classification methods
is reduced. The importance of the bias r becomes clear from
the margin, where it acts as a weight between the linear and
quadratic term.

IV. HIGHER ORDER POLYNOMIAL KERNELS

Higher-order polynomial kernels can be handled similarly
to the quadratic. SVMs with polynomial kernels of order three
learns decision functions of the form

f(x) =

p∑
k=1

xkxTBkx+ xTBx+ bTx+ b0,
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where Bk is the kth matrix of the third-order tensor B and xk

the kth element of x. For the cubic transformation

φc(x) =

 x⊗ x⊗ x
x⊗ x
x


we find the solution

Bk =
N∑
i=1

αiyix
k
i xix

T
i , k = 1, . . . , p (13)

B =
N∑
i=1

αiyixix
T
i (14)

b =
N∑
i=1

αiyixi. (15)

The matrix Bk constitutes the difference

Bk =
∑

{i:yi=+1}

αix
k
i xix

T
i −

∑
{i:yi=−1}

αix
k
i xix

T
i

where the tensors are related to the, non-standardized, coskew-
ness of the support vectors. The corresponding solution with
the common third-order polynomial kernel

Kc(xi, xj , r) =
(
xTi xj + r

)3
is

Bk =
N∑
i=1

αiyi
(
T k ◦ xki xixTi

)
, k = 1, . . . , p

B =
√

3r

N∑
i=1

αiyi
(
T ◦

(
xix

T
i

))
b =
√

3r
N∑
i=1

αiyixi.

The elements of T k are 1 for the cubic terms and
√

3 for all
cross terms. The elements of T is the same as in (12). The
margin for the cubic kernel is

M =
√
||vec (T ◦ Bs) ||22 + 3r||vec (T ◦Bs) ||22 + 3r2||bs||22,

where Bs, Bs and bs are the solutions (13)-(15) for the
simple cubic transformation. The element order of the tensor
vectorization operator is ill-defined but is unimportant in this
case. We also find that the weighting imposed by r on the
terms of the margin is given by the binomial coefficients.

Extension to fourth order and higher polynomials is straight-
forward and we find that the degree-four component of the
decision function is related to the, non-standardized, cokurtosis
of the support vectors, in the same manner as the third-order
component is related to coskewness and the second-order to
correlation.

In general, the d-degree component of the decision function
is related to the dth moment of each class in the training set.

For an n-degree polynomial kernel, the weight of the dth term
of the n− 1 terms of the margin is(

n
d

)
rd.

For high-degree polynomials, even small deviations from r =
1 will affect the lower-order terms greatly.

V. CONCLUSION

We have shown that models trained with an SVM using
a polynomial kernel can be expressed in compact form as
polynomials with tensor coefficients computed only from the
support vectors. These polynomial coefficients are related
to scaled sample moments of the support vectors, where
the scales are the support vector coefficients multiplied by
constants determined by the polynomial degree. In contrast
to the statistical moments, the coefficients of the polynomial
SVM model are neither centered to zero mean nor standardized
to unit variance and, thus, are not scale invariant. For the
quadratic kernel, the learned model consists of one part
identical to the standard linear SVM and one extra term
computed from scaled correlation matrices of the support
vectors from the two classes. The structure of the learned
model bears resemblance to models learned by QDA, with the
stark difference that QDA requires full-rank sample covariance
matrices while the SVM requires only a sparse collection of
support vectors.

This compact form of the polynomial SVM means that inter-
pretation of the models is possible, as dominating terms in any
of the tensor coefficients are directly related to combinations
between the features in the original space. For the quadratic
case, we can look for strong correlations between elements of
the support vectors, identically to how we search for strong
terms in the inverted covariance matrices of QDA in order to
explain its results.

Furthermore, we have shown that the margin of an SVM
with a polynomial kernel SVM can be expressed in terms of
the coefficients of the learned polynomial decision function,
weighted by powers of the bias r of the polynomial kernel
and the binomial coefficients.

The analysis used in this report can be applied to any
kernel that can be expressed in terms of finite series of
polynomials, e.g. a truncated polynomial expansion of the
radial basis function kernel, and provide a means to better
understand these SVM models. Also, the compact form of
the polynomial SVM can be used to store the SVM classifier
without storing the support vectors and may have uses where
it is less computationally or memory intensive compared to
the non-compact form.
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