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Abstract—This paper investigates the problem of direction-of-
70arrival (DOA) estimation in the presence of unknown sensor
gain and phase uncertainties. A novel method based on a block
sparse representation is proposed to estimate the directions of
sources. The data model is constructed under the framework
of block sparse signal representation. Then, a convex problem
is formulated to find the directions of the incident signals, and
the problem can be solved using the L1-SVD algorithm. Unlike
the existing eigenstructure-based methods and other sparsity-
based methods which require appropriate initial values of the
unknown sensor gain and phase errors for iterating between
unknown sensor errors and angles of sources, the proposed block
sparsity-based DOA estimation technique does not need any prior
knowledge about the array errors. Numerical simulations exhibit
the effectiveness and superiority of the proposed method.

Index Terms—DOA estimation, sensor gain and phase error,
block sparse representation

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation, which is
also known as direction finding, is one of the most

important research topics in array signal processing, and it
has found many applications in various practical fields, such
as radar, sonar, wireless communication, and so on [1]. There
exist many classical algorithms with high DOA estimation
resolution, including multiple signal classification (MUSIC)
method [2], estimation of signal parameters via rotational
invariance techniques (ESPRIT) [3], minimum norm method
[4], and maximum likelihood method [5], [6]. However, it is
generally accepted that these high-resolution algorithms rely
heavily on the exact knowledge of the array manifold, and
hence their performances may suffer from great degeneration
when the sensor array encounters uncertainties [7]–[9], such
as unknown sensor gain and phase errors.

Some contributions have been made to circumvent the situ-
ation of sensor gain and phase uncertainties, which are classi-
fied into two types: one is non-autocalibration [10]–[14] and
another is autocalibration [15]–[27]. The non-autocalibration
approaches requires auxiliary sources with exactly known
DOAs [10]–[12] or perfectly partly calibrated arrays [13],
[14]. In general, this type of methods can calibrate the sensor
array with high accuracy, but the auxiliary sources or partly
calibrated sensor array may not always be available in practice.

This work of Huiping Huang is supported by the ‘Excellence Initiative’
of the German Federal and State Governments and the Graduate School of
Computational Engineering at Technische Universität Darmstadt.

Autocalibration methods in [15]–[23] are based on eigen-
subspace, and therefore they may result in substantial perfor-
mance degradation in low signal-to-noise ratio (SNR) or when
the snapshots are limited. Recently, as the key observation
that the DOAs of signals are sparse in the whole spatial
domain was found [28], approaches under the framework of
sparse signal representation have been proposed to tackle the
direction finding problem under unknown sensor array im-
perfections [24]–[27]. A sparsity-based method is introduced
in [24], where it is assumed that only few sensors suffer
from errors. Hence, it is inapplicable to the case where all
sensors are biased. Iterative approaches are proposed in [25]–
[27] to jointly estimate DOAs of signals and calibrate the
unknown sensor gain and phase uncertainties. However, they
need appropriate initial values of the unknown sensor errors,
which may be unavailable in some practical scenarios.

In this paper, we investigate the problem of direction
finding with unknown sensor gain and phase uncertainties,
and propose a block sparsity-based DOA estimation method.
In contrast to the eigenstructure-based methods and the other
existing sparse representation-based methods, such as [25]–
[27], which need appropriate initial values of the sensor
uncertainties for iterating between calculating the DOAs and
the unknown sensor parameters, the proposed DOA estimation
method does not require any prior information of the sensor
gain and phase errors.

The paper is organized as follows. Section II introduces the
signal model and the problem statement. The proposed block
sparsity-based DOA estimation method is given in Section III.
Simulation results are provided in Section IV, while Section
V concludes this paper.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider K far-field narrowband incoming signals from
DOAs Θ = [θ1, θ2, · · · , θK ]T , impinging on a uniform linear
array (ULA) with M omnidirectional sensors, where (·)T
stands for the transpose operator. The array observations x(t)
can be modelled as follows

x(t) = As(t) + n(t) (1)

where t = 1, 2, · · · , T is the time index, T is the total
number of snapshots, and s(t) = [s1(t), s2(t), · · · , sK(t)]T

and n(t) = [n1(t), n2(t), · · · , nM (t)]T represent the signal
waveform and additive Gaussian noise, respectively. A denotes
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the steering matrix, i.e., A = [a(θ1),a(θ2), · · · ,a(θK)] with
the steering vectors a(θk), k = 1, 2, · · · ,K being defined as

a(θk) , [1, β(θk), · · · , βM−1(θk)]
T . (2)

Here β(θk) = ej
2π

λ
d sin(θk) with λ denoting the wavelength of

the incoming signals, and d is the inter-element spacing.
If the sensor array encounters unknown gain and phase

errors, the observation data model (1) becomes

y(t) = ΓAs(t) + n(t) (3)

where Γ is a diagonal matrix with the elements in its main
diagonal standing for sensor gain and phase uncertainties as

Γ = diag{[ρ1, ρ2, · · · , ρM ]T } (4)

where diag{·} denotes an operator returning a diagonal matrix
whose main diagonal is composed of the bracketed vector, and
ρm ∈ C,m = 1, 2, · · · ,M .

The problem addressed here is as follows: Given the array
observation data y(t), t = 1, 2, · · · , T , estimate the unknown
incoming directions of sources Θ = [θ1, θ2, · · · , θK ]T in the
presence of the unknown sensor gain and phase uncertainties.

III. PROPOSED METHOD

In this section, we propose a novel estimation algorithm
for direction finding, where the data model in (3) is first
formulated under the framework of block sparse signal rep-
resentation, then a convex problem is presented and solved
via the L1-SVD algorithm.

We start with ΓA in (3) as follows

ΓA = Γ[a(θ1),a(θ2), · · · ,a(θK)]

= [Γa(θ1),Γa(θ2), · · · ,Γa(θK)].
(5)

Recalling that for k = 1, 2, · · · ,K,

Γa(θk) =


ρ1

ρ2
. . .

ρM




1
β(θk)

...
βM−1(θk)



=


1

β(θk)
. . .

βM−1(θk)




ρ1
ρ2
...
ρM


= diag{a(θk)} · γ

(6)

where γ = [ρ1, ρ2, · · · , ρM ]T , we can rewrite ΓA in (5) as

ΓA = [diag{a(θ1)} · γ, · · · ,diag{a(θK)} · γ]

= [diag{a(θ1)}, · · · ,diag{a(θK)}]

 γ
. . .

γ

 .
(7)

By substituting (7) back into (3), and defining

b(θk) = diag{a(θk)}
B = [b(θ1),b(θ2), · · · ,b(θK)]

(8)

s̆k(t) = γ · sk(t)
s̄(t) = [̆s1(t), s̆2(t), · · · , s̆K(t)]T

(9)

we have
y(t) = Bs̄(t) + n(t) (10)

where b(θk) and B are called block steering vector and block
steering matrix, respectively, and s̄(t) is called block signal
waveform.

If we take angle grids in the angle region of interest as Θ̃ =
[θ̃1, θ̃2, · · · , θ̃K̃ ]T , where K̃ � K, (10) can be reformulated
as follows

y(t) = B̃s̃(t) + n(t) (11)

where B̃ = [b(θ̃1),b(θ̃2), · · · ,b(θ̃K̃)] and s̃(t) is block sparse
signal waveform with only the block-entries corresponding to
the true DOAs being nonzero. Hence, the problem of direction
finding using (3) is interpreted as finding the positions of
nonzero block-entries in s̃(t) by means of (11). Considering
the sampling collections, (11) can be written as

Y = B̃S̃ + N (12)

where Y, S̃, and N are the collection matrices of y(t), s̃(t),
and n(t), respectively, i.e., Y = [y(1),y(2), · · · ,y(T )], S̃ =
[̃s(1), s̃(2), · · · , s̃(T )], and N = [n(1),n(2), · · · ,n(T )].

In order to solve problem (12) via the L1-SVD algorithm,
we follow the procedure outlined in [28]. First, a singular value
decomposition (SVD) is performed on Y in order to reduce
both the computational complexity and the sensitivity to noise.
That is,

Y = [Us Un]

[
Σs 0
0 0

] [
VH
s

VH
n

]
(13)

where (·)H denotes the Hermitian transpose operator, and one
obtains YSV = YVs, S̃SV = S̃Vs, and NSV = NVs.
Then, a modified version of the model in (12) with reduced
dimensions can be stated as follows

YSV = B̃S̃SV + NSV . (14)

Next, aiming at exploiting the sparsity of S̃SV , the following
convex optimization problem is constructed

min
S̃SV

‖S̃(l2)
SV ‖0

s.t. YSV = B̃S̃SV + NSV

(15)

where S̃
(l2)
SV returns a vector whose elements are the L2-norm

of the corresponding block-row of S̃SV , and ‖ ·‖0 denotes the
L0-norm of a vector. This is an NP-hard problem because of
the L0-norm [29]. Replacing the L0-norm with the L1-norm,
and in a least square sense, (15) can be finally reformulated
as follows

min
S̃SV

‖S̃(l2)
SV ‖1

s.t. ‖YSV − B̃S̃SV ‖F ≤ ε
(16)

where ‖ · ‖1 and ‖ · ‖F stand for the L1-norm of a vector
and the Frobenius norm of a matrix, respectively, and ε is a
user-defined parameter specifying how much noise we wish
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to allow. This is a convex problem and it can be efficiently
solved by some convex optimization tools such as CVX [30].
Once a sparse solution S̃SV is found, the DOAs of the signals
are determined.

It is noteworthy that the parameter ε in (16) should be cho-
sen on the basis of the noise power which may be unknown.
Since it is out of the scope of this paper, we do not discuss
this issue here, and more details can be found in [28] and
the references therein. Besides, in order to avoid the off-grid
problem, a so-called coarse-to-fine scheme can be adopted.
That is, once we get coarse DOAs, we can take more dense
angle grids around them and achieve more accurate DOAs.
This scheme is carried out until satisfied DOA accuracy is
obtained. However, this results in very high computational cost
of the proposed method.

IV. SIMULATIONS

In this section, four numerical experiments are carried out to
evaluate the performance of the proposed block sparsity-based
DOA estimation method.

In the first two examples, the spatial spectrum is adopted,
which is defined as follows: Denoting the sparse solution to
(16) as S̃SV , and ŝ = S̃

(l2)
SV , the spatial spectrum is calculated

by ŝ/max {ŝ}, where max{·} returns the maximal element
of a vector. Note that the indicators of ŝ correspond to the
angles.

Example 1: Spatial Spectrum with Multiple Sources. In this
example, we use a ULA with M = 10 sensors to receive
K = 9 uncorrelated far-field narrowband signals from DOAs
Θ = [−61◦,−42◦,−29◦,−12◦, 0◦, 13◦, 28◦, 43◦, 57◦]T . The
sensor gain and phase errors are randomly generated by draw-
ing from uniform distributions on [0.8, 1.2] and [−30◦, 30◦],
respectively. The signal-to-noise ratio is set to SNR = 30 dB,
and the number of snapshots is T = 60. The density of angle
grids is set to be 1◦. The spatial spectrum obtained by the
proposed method is plotted in Fig. 1. It is seen from Fig. 1
that the proposed method can shape sharp peaks in the spatial
spectrum, and the DOA estimates of the proposed method are
quite close to the true ones.

Example 2: Spatial Spectrum with Close-by Sources. In this
example, we consider K = 2 signals with close incoming
angles Θ = [0◦, 3◦]T impinging on a ULA with M = 20
sensors. The density of angle grids is set to be 0.1◦. The other
parameters are the same as those of Example 1. The spatial
spectrum is plotted in Fig. 2, from which it can be seen that the
proposed method can estimate two close-by sources without
knowing the sensor gain and phase uncertainties.

In the following two examples, the root mean square error
(RMSE) is considered as the criterion for DOA estimation. It
is defined as follows

RMSE =

√√√√ 1

KQ

K∑
k=1

Q∑
q=1

(θ̂k,q − θk)2 (17)

where θ̂k,q represents the DOA estimate of the kth signal
in the qth Monte Carlo trial and Q is the total number of
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Fig. 1: Spatial spectrum with 10 sensors, 9 sources, T = 60
snapshots and SNR = 30 dB.
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Fig. 2: Spatial spectrum with 20 sensors, 2 sources, T = 60
snapshots and SNR = 30 dB.

trials. The eigensubspace-based DOA estimation method in
[15] and the sparse representation-based method in [26] are
used for comparison. The initial sensor errors of both the
eigensubspace-based method and the sparse representation-
based method are chosen to be an identity matrix. The MUSIC
algorithm with known sensor gain and phase errors is used as a
benchmark. For the sake of fairness, the density of angle grids
of the proposed block sparsity-based method and the sparse
representation-based method are both chosen to be 1◦.

Example 3: RMSE versus SNR. We consider in this example
K = 3 signals from DOAs Θ = [−18.87◦, 6.12◦, 32.25◦]T
impinging on a ULA with M = 7 sensors. The sensor gain and
phase errors are randomly generated by drawing from uniform
distributions on [0.5, 1.5] and [−10◦, 10◦], respectively. Q =
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Fig. 4: RMSE versus number of snapshots with SNR = 10 dB.
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Fig. 3: RMSE versus SNR with number of snapshots T = 60.

100 Monte Carlo trials are performed. RMSE versus SNR is
drawn in Fig. 3, with SNR varying from −10 dB to 20 dB
and the number of snapshots being T = 60. We can see from
Fig. 3 that the proposed method outperforms the other two
methods when the SNR is equal to or larger than −5 dB.

Example 4: RMSE versus Number of Snapshots. In this
example, the SNR is fixed to 10 dB, while the number of
snapshots changes from 30 to 130. The other parameters are
the same as those of Example 3. RMSE versus number of
snapshots is drawn in Fig. 4, from which it can be seen again
that the proposed block sparsity-based method has lowest
RMSE compared to the eigensubspace-based method and the
sparse representation-based method.

One of the reasons why the proposed method outper-
forms the eigensubspace-based method [15] and the sparse

representation-based method [26] in Examples 3 and 4 may
be that the latter two methods choose the identity matrix as
the initial guess of the sensor gain and phase uncertainties.
However, this initial guess still differs from the true sensor
errors, which finally results in their worse performance in
DOA estimation.

V. CONCLUSION

In this paper, the problem of direction finding in the
presence of sensor gain and phase errors has been investigated,
and a DOA estimation method based on block sparsity has
been proposed. The signal model has been constructed in
the framework of block sparse representation, and a convex
optimization problem has been formulated and solved via L1-
SVD method. It is worth mentioning that the proposed method
does not need a priori knowledge about the sensor gain and
phase errors. Numerical results has showed the effectiveness
and superiority of the proposed block sparsity-based method.
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