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José Gabriel Garcı́a∗, Adrián Colomer∗, Fernando López-Mir∗, José M. Mossi†, Valery Naranjo∗
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Abstract—Nowadays, there are high rates of discordance
between pathologists when they analyse the biopsy samples to
diagnose prostate cancer according to the Gleason scale. Thus,
we designed a computer-aid system capable of accurately dif-
ferentiating between normal tissues and pathological ones at the
first stage. Specifically, we made use of an original segmentation
algorithm to identify regions of interest and distinguish from
them between artefacts (false glands), benign glands and Gleason
grade 3 glands. Regarding the building of predictive models,
we applied, for the first time, deep-learning algorithms on the
previously segmented gland candidates. We compared the results
reported by two different convolutional neural networks (CNNs)
addressed with distinct classification strategies. The best model
reached a multi-class classification accuracy of 0.812±0.033, after
performing an in-depth data partitioning per medical history.

Index Terms—Convolutional neural networks, gland segmen-
tation and classification, histological image, prostate cancer

I. INTRODUCTION

Currently, the procedure to diagnose prostate cancer lies in
a very tedious manual task that entails a high workload for
the pathologists. They use the Gleason score [1] to classify
the samples into different grades according to the severity of
cancer. Gleason grade 1 and 2 are closely similar to normal
tissues, whereas Gleason grades 3, 4 and 5 correspond to
cancerous tissues, from less to more severe.

Many authors of the state of the art developed computer-
aid and prognosis Gleason systems to help the specialists
to reduce its subjectivity level. Some of them carried out
an approach based on regions (patches) from which they
extracted morphological and textural features [2], [3], or colour
and fractal dimensions [4], [5]. Other authors performed a
previous segmentation stage to identify regions of interest
(ROIs) that allow to include more specific information in their
predictive models [6], [7]. They applied features based on
texture, morphology, intensity and orientation of the interesting
areas to distinguish either between healthy and pathological
tissues or between the different grades of the Gleason scale.
Note that some studies, such as [8], [9], made use of contextual
and structural features to address a strategy based on the
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classification and evaluation of individual glands, instead of
reporting results per image. Nevertheless, the traditional hand-
driven learning approach has evolved in recent years towards
deep learning, which is based on examples rather than on hand-
crafted features [10], [11]. So, in this paper, we make use
of convolutional neural networks (CNNs) to create predictive
models from the previous segmented gland candidates.

In particular, the main objective of this work is to discrim-
inate between normal tissues (Gleason grade 2) and patho-
logical tissues in their first stages of cancer (Gleason grade
3), since both describe a pattern corresponding to moderately
differentiated carcinomas. The pathologists that collaborate
in this project maintain that Gleason grades 2 and 3 are
characterised as the only ones that present individual glands,
so we focused on the accurate identification and classifica-
tion of the gland units, like the aforementioned studies [8],
[9]. However, unlike in [7], [9], where the researchers used
the Nuclei-Lumen Algorithm (NLA) to perform a polygonal
segmentation of the glands, we applied an original method
called Locally Constrained Watershed Transform (LCWT) [12]
which allows to be faithful to the gland segmentation stipulated
by the medical literature. It should be noted that, to the best
of the author’s knowledge, we are the first who perform
a multi-class classification approach applying deep-learning
algorithms on segmented gland candidates, instead of using
patches or sub-regions. It is also remarkable that, similarly to
[9], we discerned between artefacts, benign and pathological
glands, as shown in Fig. 1, unlike in [8], where the authors
did not take into account the artefact elements.

Fig. 1. (a) Tissue with a pattern of Gleason grade 2. (b) Sample of Gleason
grade 3. (c) Artefact. (d) Benign gland unit. (e) Pathological gland unit.
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II. MATERIAL

The experiments detailed in this paper are carried out
using a private database composed of 35 whole-slide images
(WSI) belonging to 25 different patients of the Hospital
Clı́nico Universitario de València. In particular, an expert in
pathological anatomy determined that 17 whole-slide images
from 8 patients corresponded to benign samples, whereas the
other 18 whole-slide images relative to the rest of patients
corresponded to cancerous tissues in an early stage. In order
to construct the database from the WSI, we performed a simple
filtering to remove those pixels of the samples without tissue
information. Then, we implemented a sliding window protocol
to obtain sub-images of 1024×1024 dimensions corresponding
to an optical magnification of 10×, which are characterised
by presenting an optimal resolution to address the approach
based on gland segmentation. Specifically, we obtained 814
sub-images relative to healthy tissues and 614 corresponding
to pathological tissues, which form the final database.

III. METHODS

A. Segmentation procedure

Clustering. In order to extract the necessary inputs for the
LCWT segmentation algorithm, we addressed a clustering
step based on the k-means technique to group the pixels of
the RGB image I into k=4 different classes corresponding to
the lumen, nucleus, cytoplasm and stroma components. Unlike
in [7], [9], where the authors only use RGB images, we made
use of different colour spaces with the aim of taking into
account the optimal intensity level of the pixels, depending on
the component mask that we wanted to obtain. Specifically, in
order to compute the map of lumen candidates, whose pixels
correspond to the lightest intensity levels of the RGB image,
we extracted the saturation contribution SHSV from the HSV
colour space since it allows to highlight the brightest pixels
according to (1), where MAX and MIN are the maximum
and minimum of the R, G and B components.

SHSV =

{
0, if MAX = 0
1− MIN

MAX , otherwise
(1)

After extracting the SHSV grey-scale image, we performed
the k-means clustering, with k=4, to obtain the outputs corre-
sponding to the lumen candidates (L). From the CMYK colour
space, we obtained the cyan channel CCMYK to achieve
the maps relative to the cytoplasm and stroma components.
Since the cyan colour allows to emphasise the blue channel
and reduce the red contribution CCMYK → (0, 1, 1), it is
able to accurately discern between the purple and magenta
contributions of the RGB images, which are related to the
cytoplasm and stroma pixels, respectively. In the same way
as before, we carried out the k-means algorithm and used the
output to obtain two binary maps, (C) and (S), by means of
exclusively selecting the pixels associated to the cytoplasm
and stroma structures. Regarding the attainment of the nuclei
mask (N ) exposed in Fig. 2 (a-c), we used a reshaped RGB
image similarly to [9], from which we randomly computed the

5% of the pixels to calculate the centroid µ of each cluster, im-
proving the computational cost. In this case, after performing
the k-means algorithm, we calculated the Euclidean distance
between the intensity value of each pixel p and the coordinates
of the centroid µ to group the pixels into its cluster.

Post-processing. Once all of the candidates’ maps are
obtained, we addressed a post-processing step with the aim
of removing the noise of the binary masks that constitute the
inputs to the LCWT segmentation method. Specifically, in
order to achieve the final mask of lumen candidates LM , we
made use of a morphological operation called area opening
(γaλ) (2), to discard those 8-connected objects Li with an area
smaller than λ = 20 pixels from the mask L. Then, we also
applied an operation of dilation δB(L) = L ⊕ B, where B
is a disc structuring element (SE) with a radius r = 1 that
allows to increase the area of the possible lumens.

γaλ(L) =
⋃
{Li | i ∈ I, Area(Li) ≥ λ} (2)

To extract the cytoplasm CM and stroma SM final masks,
we applied an opening filter described by γB(X) = (X	B)⊕B
(with X = CM or X = SM ), followed by an area opening
with the same parameters as before to discard the structures
of pixels with a low connectivity. Regarding the extraction of
the nuclei mask NM (Fig. 2 (d)), we computed a dilation
to link the pixels relative to each nucleus element Ni around
the glands, and another area opening with λ = 15 pixels to
remove those non-epithelial nuclei scattered across the stroma.

Gland unit segmentation. There are some state-of-the-
art studies, such as [13], that proposed convolutional neural
networks to address the segmentation of individual glands
from the biopsy samples. However, in this paper, we use an
algorithm that does not require any manual effort to build the
segmentation models, unlike deep-learning methods. In par-
ticular, we made use of a variant of the traditional watershed
transform with markers [14], which is based on mathematical
morphology to perform the segmentation. This technique
consists in converting a grey image IG in a topographic
surface where each defined regional minimum mi represents a
region called catchment basin CBi. From them, an inundation
process is simulated to increase the water level inside the
basins, like a process of region growing in a 3D space. The
points in which two or more basins come into contact are
established as the watershed lines to segment the catchment
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Fig. 2. (a) RGB image of a specific gland. (b) 3D pixels distribution according
to their intensity levels. (c) Output corresponding to the map of nucleus
candidates. (d) Final nuclei mask after the post-processing step.
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basin CBi corresponding to each regional minimum mi.
Nevertheless, according to the medical literature, a gland unit
is defined by the epithelial layer of non-connected nuclei that
surrounds its lumen [9]. So, it is necessary to perform a variant
of the aforementioned technique able to flood the basins
without water leaking through the space between adjacent
nuclei. For this reason, unlike Naik et al. [6] who described
the segmentation by the cytoplasm component, instead of by
the nucleus elements, we made use of the LCWT algorithm
[12] to determine the watershed lines from regions whose
boundaries remain open, i.e. from the non-connected nuclei of
each gland candidate. This technique was implemented for the
first time (on histological images) in our previous work [15],
with the final aim of removing the artefacts (false glands).

In this paper, making use of the masks previously achieved
from the clustering and post-processing stages, we define the
pixels pi ⊂ Li as internal markers; whereas we use the pixels
pi ⊂ S as external markers. The objective is to initialise
the region growing step from the aforementioned markers,
but considering the main novelty of the LCWT technique:
the constraints. LCWT algorithm requires an input image,
besides the IG, that acts as a restriction to the markers’
progress. Particularly, taking into account that the epithelial
nuclei elements Ni ⊆ N must be the gland boundaries, we
defined the nuclei mask N as the input image, and imposed
the constraints introducing different structuring elements SEs
that allow to define the constrained catchment basin CCBi
for each regional minimum mi, according to (3):

CCBi =
⋃
δ≥0

[Vi(δ)⊕ SE] (3)

Vi is the constrained partial catchment basin defined for
each marker mi as follows:

Vi(δ) = Ri(δ)\
⋃
i6=j

[Rj(δ)⊕ SE ⊕ SE], (4)

where Ri is the threshold set obtained making use of the
Minkowski distance function Tf for each pixel p and marker
mi, according to:

Ri(δ) = {p|Tf (mi, p) ≤ δ}, ∀δ ≥ 0 (5)

Note that two disk SE with different radius values should
be used depending on if mi corresponds to an internal or an
external marker. In particular, we used r = 1 and r = 5,
respectively, to address the water flood from each CCBi,
similarly to the traditional watershed technique. However, in
this case, the process was stopped when the size of some SE
was greater than the distance between adjacent nuclei Ni. This
fact allows to establish the watershed lines over the contact
points between the different constrained catchment basins, as
shown in Fig. 3. So, being f : D → N, the locally constrained
watershed transform of f is:

LCWT (f) = D\
⋃
i∈IG

CCBi (6)

Fig. 3. (a) Original 1024 × 1024 RGB image. (b) Output of the LCWT
algorithm. (c) Segmented regions that contain some Li highlighted in red. (d)
Boundaries of the gland candidates overlapped over the original image. (e)
Gland candidates extracted separately.

After applying the LCWT algorithm, we discarded the
output regions that did not contain any lumen candidate Li
inside them, as shown in Fig. 3 (c-d). We finally stored each
gland candidate Gi separately (see Fig. 3 (e)) to construct, in
an innovative way, the predictive models from them.

B. Classification strategy

Data partitioning. It should be noted that we did not
perform a merely random data partitioning, but we designed a
rigorous strategy based on separating the samples into five data
sets (folds), in which each of them contained a similar number
of glands candidates and a balanced number of elements of
each class. In addition, we performed the data partitioning
taking into account the patient medical history, so the gland
candidates corresponding to a specific patient ID were always
stored in the same data subset (fold). Once the images Gi were
established in the different subsets according to its patient ID,
we implemented an external 5-fold cross-validation technique
with the aim of providing reliable results trough avoiding the
randomness effect of the partitioning. In this way, we carried
out five iterations using in each of them, 4 folds to train a
classification model and 1 fold to test it. Moreover, in each
iteration, we performed a validation set composed of the 10%
of the gland candidates images corresponding to the 4-training
sets, with the aim of assessing the overfitting of the CNNs.

Network architectures. It is important to note that the
depth of the neural networks is really determinant to reach
high accuracy results in the classification stage. For this
reason, we propose two different approaches based on deep-
learning algorithms in order to build predictive models from
two network architectures with a distinct structure and depth.

As we show in Fig. 4, we made use of a very popular
CNN called Very Deep Convolutional Networks for Large-
Scale Image Recognition VGG19 [16]. In particular, in the
same way as [17], we used 3× 3 receptive fields to convolve
them with the input at every pixel, and we defined a stride
= 1 to move each filter of the convolutional layers along the
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Fig. 4. VGG19 network architecture used to build predictive models from
gland candidates of histopathological prostate images.

image. However, in order to avoid the possible overfitting, we
included two dropout layers (of 0.5 and 0.25) after each fully-
connected layer with the aim of randomly removing the 50%
and 25% of neurons, respectively. In addition, we defined the
second hidden layer with 2048 neurons, instead of the 4096
proposed by the original VGG19. Moreover, we performed a
final softmax layer composed of three neurons to discriminate
between artefacts, benign glands and Gleason grade 3 glands.

Note that our classification database consists of 3.200
artefacts, 3.195 benign glands and 3.000 pathological glands,
which is an insufficient number of specific images to train from
scratch a neural network with the depth of the VGG19 archi-
tecture, whose base model is composed of four convolutional
blocks (see Fig. 4). For this reason, we computed a transfer
learning technique called fine-tuning [18], which allows to
make use of the wide knowledge acquired by the VGG19
architecture when it was trained on the ImageNet data set. In
this way, we used the weights ωi pre-trained with around 14
million natural images belonging to 1000 classes for applying
a deep fine-tuning [19] by means of freezing the coefficients of
the three first convolutional blocks of the CNN. Then, we used
our specific data set of prostate gland candidates to re-train
the weights of the last convolutional block. We also applied
data augmentation [20] to increase the database of specific
images through the creation of synthetic samples similar to the
original gland candidates and with the same ground-truth label.
Particularly, we defined the aggressive factor ratio as α = 0.02
to address the intensity and geometric transformations to
obtain the artificial samples. We also initialised the batch size
hyperparameter as β = 16 to update the weights when 16
images are forward propagated and its error is calculated,
according to the categorical cross-entropy loss function (7):

L(y, ŷ) = −
∑
i

yi log(ŷi) (7)

where yi is the ground-truth label of a specific image and
ŷi is the predicted label for such image. We updated the
weights according to the Stochastic Gradient Descent (SGD)
(8), defining a learning rate η = 10−5 and a momentum
γ = 0.98 to improve the convergence rate of the network.

ω(t+ 1) = ω(t) + V (t+ 1), (8)

where ω(t + 1) is the updated weight and V (t + 1) is
described as follows, considering V (t) = 0 :

V (t+ 1) = γV (t)− η d

dω
L(y, ŷ) (9)

We initialised ω(t) with random low values and established
a maximum number of epochs N = 100 with a stop criterion
sc = 15 epochs to avoid the overfitting in the training stage.

Besides that, we designed another CNN with lower depth
to train a network architecture with the specific images from
scratch. In this case, we did not carry out transfer learning
techniques since we designed a shallow CNN (gpNet) whose
base model is composed of two convolutional blocks with two
and three convolutional layers, respectively. We also included
batch normalisation and dropout layers (with coefficients of
0.25) after each convolutional block with the aim of reducing
overfitting. Additionally, we designed a top model with a fully-
connected layer composed of 512 neurons and a dropout layer
of 0.25 followed by a softmax layer with three neurons. Note
that we kept the initialisation of the rest of hyperparameters to
analyse the importance associated with the depth of the CNN,
as well as the relevance of the transfer learning techniques. It
is also important to remark that we addressed this stage using
the framework of Keras with Tensorflow as back-end [21].

IV. RESULTS AND DISCUSSION

Regarding the segmentation stage, the modified LCWT
algorithm was evaluated in our previous work [15], in which
we reported a considerable outperforming with respect to
the publicly available NLA algorithm proposed in [9] and
recently implemented in [7]. In particular, we achieved a
Jaccard Index JI = 0.739 ± 0.108 and a Dice coefficient
D = 0.849± 0.121, from 500 benign and pathological glands
randomly selected. However, the main novelty of this paper
lies in the application of deep-learning techniques, after the
LCWT segmentation, to discriminate between false, benign
and pathological glands, with the global aim of distinguishing
between normal tissues and cancerous ones at the first stage.
We expose in Table I the results obtained from different figures
of merit after applying both the modified VGG19 and the
developed gpNet architectures. Additionally, in order to show
the performance of each CNN, we represent in Fig 5, the
ROC curves corresponding to both classification experiments,
i.e. artefacts Vs. glands and benign Vs. pathological glands.

Note that Table I shows a very slight outperforming of
the VGG19 architecture over the gpNet, which may be due
to the knowledge learned through training the model with
a database composed of a much higher number of images.
However, gpNet is much more efficient than VGG19 because it
has half of trainable parameters (67.148.803 Vs. 131.185.731,
respectively), which allows to build the models more quickly
during the learning process. For this reason, since gpNet
neural network requires much fewer convolutions to address
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TABLE I
CLASSIFICATION RESULTS ACHIEVED FROM TWO DIFFERENT

APPROACHES BASED ON DEEP-LEARNING ALGORITHMS.

Artefacts Vs. Glands Healthy Vs. Cancer
VGG19 gpNet VGG19 gpNet

Sensitivity 0.900 (0.020) 0.913 (0.015) 0.747 (0.109) 0.705 (0.138)
Specificity 0.938 (0.026) 0.920 (0.035) 0.780 (0.123) 0.800 (0.141)

F-Score 0.891 (0.032) 0.887 (0.022) 0.753 (0.058) 0.730 (0.095)
AUC 0.974 (0.010) 0.972 (0.008) 0.889 (0.036) 0.886 (0.079)

Accuracy 0.925 (0.018) 0.919 (0.053) 0.816 (0.030) 0.821 (0.084)

Fig. 5. ROC curves obtained after testing data from the different CNNs.

the forward-propagation step during the prediction, we can
conclude that the gpNet model is better, also attending to the
similarity of the results reached for all metrics with respect to
the VGG19 architecture. Additionally, we can also observe
in Fig. 5 a great difference depending on the experiment
under study. The discrimination between artefacts and glands
is successfully achieved, reporting high values for the different
figures of merit in both architectures. Nevertheless, the experi-
ment focused on distinguishing between healthy and cancerous
glands shows the most prominent differences, since the results
provided by gpNet neural network differ a lot depending on the
test data set, whereas VGG19 reports similar results regardless
of the fold, as shown in Fig. 5. Based on this fact, we can
determine that VGG19 is a more robust model because it is
not affected by the partitioning criterion at patient level.

V. CONCLUSION

In this paper we presented an automatic system based
on the identification of the first stage of prostate cancer
from histopathological images. We made use of the LCWT
segmentation algorithm to obtain the gland units separately to
build predictive models from them. In particular, we performed
two convolutional neural networks with a different depth to
address the classification and prediction stages from diverse
strategies. Finally, the proposed gpNet is considered the best
model in terms of computational cost and quality of results.
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