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ABSTRACT

Convolutional dictionary learning (CDL) is a widely used technique
in many applications on the signal/image processing and computer
vision fields. While many algorithms have been proposed in order to
improve the computational run-time performance during the train-
ing process, a thorough analysis regarding the direct relationship
between the reconstruction performance and the dictionary features
(hyper-parameters), such as the filter size and filter bank’s cardinal-
ity, has not yet been presented.

As arbitrarily configured dictionaries do not necessarily guaran-
tee the best possible results during the test process, a correct selec-
tion of the hyper-parameters would be very favorable in the training
and testing stages. In this context, this works aims to provide an
empirical support for the choice of hyper-parameters when learn-
ing convolutional dictionaries. We perform a careful analysis of the
effect of varying the dictionary’s hyper-parameters through a denoi-
sing task. Furthermore, we employ a recently proposed local `0,∞
norm as a sparsity measure in order to explore possible correlations
between the sparsity induced by the learned filter bank and the re-
construction quality at test stage.

Index Terms— Convolutional sparse representation, convolu-
tional dictionary learning, hyper-parameters

1. INTRODUCTION

Convolutional sparse representation (CSR) techniques have been
shown to provide state-of-the-art results in a wide variety of signal
and image processing and machine learning applications [1] . The
CSR model consists in representing a given image as a sum over a
set of convolutions between a set of dictionary filters dk and their
corresponding feature maps xk. The standard form of the Convolu-
tional Sparse Coding (CSC) problem is given by the Convolutional
Basis Pursuit Denoising (CBPDN) objective, namely1:

argmin
{xk}

1

2

∥∥∥∑
k

dk ∗ xk − s
∥∥∥2
2
+ λ

∑
k

∥∥∥xk∥∥∥
1

. (1)

Particularly, the presence of convolutions and sparsifying oper-
ations in this model has been commonly linked (both heuristically
and theoretically) to the layers of Convolutional Neural Networks
(CNN) [2]. These two fields have frequently borrowed ideas and

1Since the variables in (1) correspond to 2D signals (images), it is intu-
itive to calculate the fidelity term as a Frobenious norm. However, one can
cast these variables as 1D signals without losing generality and treat them
with the `2 norm, as it is done across the CSR literature.

tools from the other, cross-fertilizing the development of new ap-
proaches in both.

A natural observation in the CSR model is that the dictionary
characteristics (such as cardinality and filter size) are of paramount
importance for the quality of the representation, just as an appropri-
ate layer choice is essential for a competitive CNN structure. How-
ever, while some studies have addressed the choice for filter bank
(FB)’s cardinality and size of filter in convolutional layers of CNNs
[3, 4], to the best of our knowledge there are currently no works in
the field of CSR that attempt to find the optimal configuration for
these values. Moreover, via the theoretical analysis of a local `0,∞
norm penalized version of (1), [5] was able to provide meaningful
guarantees for the success of popular `1-norm penalized CSC algo-
rithms, such as those based on the Alternating Direction Method of
Multipliers (ADMM) [6] and Accelerated Proximal Gradient (APG)
[7] frameworks.

In this context, the objective of this paper is to present a
thorough evaluation on the effect of the choice of the mentioned
hyper-parameters when performing convolutional dictionary learn-
ing (CDL). Our results favor the conclusion that the local `0,∞
norm of the feature maps obtained during training stage is closely
related to the reconstruction performance (in terms of PSNR) during
a denoising task, leading to a lower bound on the FB’s cardinal-
ity. Furthermore, the experimental results also show that a possible
lower bound for filter size can be 24× 24, yielding results compara-
ble to the optimal value.

The rest of this paper is organized as follows: Section 2 reviews
technical details of the CDL problem and the local mixed `0,∞ norm.
In Section 3, we report previous information about parameters and
hyper-parameters selection. In Section 4, we present a thorough de-
scription and analysis of our experiments and results, respectively.
In Section 5, we give our final remarks.

2. PREVIOUS RELATED WORK

Our primary interest lies in the branch of CSR that deals with esti-
mating the optimal dictionary filters for a given image training set,
termed Convolutional Dictionary Learning (CDL) and represented
by the problem:

argmin
{xr,k}{dk}

1

2

∑
r

∥∥∥∑
k

dk ∗ xr,k − sr

∥∥∥2
2
+

λ
∑
r

∑
k

∥∥∥xr,k∥∥∥
1

s.t. ‖dk‖2 = 1 ∀k, (2)

where {xr,k} represents the R sets of K feature maps (each one
withN1×N2 samples), {dk} a set ofK, L1×L2 dictionary filters,
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{sr} the R training images of size N1 × N2, and λ denotes the
regularization parameter. The norm constraint on the filter set is
required to avoid scaling ambiguities.

Problem (2) has a non-convex geometry, which is usually mini-
mized by alternating updates between two convex sub-problems: the
feature update ({xk,m}) and the dictionary update ({dm}). In the
literature, the latter has been most studied due to the high complexity
related to the training set sizes.

The dictionary update sub-problem for (2) can be constructed by
using the simplification

∑K
k=1 xr,k ∗ dk = Xrd, which results in a

convolutional variant of the Method of Optimal Directions (MOD)
[8] that can be written as

argmin
{d}

1

2

∑
r

∥∥∥Xr ∗ d− sr

∥∥∥2
2

s.t d ∈ CPN . (3)

where CPN = {x ∈ RN : (I − PPT )x = 0, ‖x‖2 = 1} is the
constraint set for an adequate spatial support and normalized dictio-
nary filters, and P represents the zero-padding projection operator.

Earlier algorithms [9],[10],[11] used to efficiently solve the CDL
problem are based on ADMM approaches. Their main framework
consists on handling the aforementioned problem in a transform
plane such as the frequency domain, where the convolutions in the
`2 fidelity term are replaced by simple Hadamard products. A more
recent branch of research has focused on gradient descent (GD)
formulations [12],[13],[14] which significantly improve the com-
putational complexity and memory footprint with respect to their
ADMM-based counterparts. One of the fastest GD methods is the
accelerated proximal consensus approach [14], in which the solution
is decoupled across the index of training images.

An alternative CDL stream is aimed at learning separable filter
banks (instead of usual non-separable ones) in order to reduce the
implicit cost of the convolution operations. [15] proposed to esti-
mate the separable filters through independent ADMM formulations
for vertical and horizontal filters. A more computationally efficient
separable algorithm was proposed in [16], based on the Accelera-
ted Proximal Gradient (APG) non-separable algorithm plus an ad-
ditional rank-1 constraint. Recently, a combinatorial learning ap-
proach was proposed in [17] to exploit redundancy properties in the
separable FB (using all possible combinations of the horizontal and
vertical sets).

2.1. Accelerated Proximal Gradient Consensus

The consensus approach [6],[18] is a well-known strategy to de-
couple a problem through independent local variables, by impos-
ing an equality constraint. Using a particular constrain set CC , [14]
proposed to rewrite the dictionary sub-problem (3) in a consensus-
compatible form as

argmin
{dr}

1

2

∑
r

∥∥∥Xrdr−sr
∥∥∥2
2
+
∑
r

ιCPN(dr)

+ ιCC(d1,d2, · · · ,dR) , (4)

whereCC = {(d1,d2, · · · ,dR)|d1 = d2 = · · · = dR} represents
the constraint set that enforces equality among the local dictionaries,
and ιCC and ιCPN are the indicator functions of the constraint sets
CC and CPN , respectively. The proximal gradient derivation of (4)
is given by

h(i+1)
r = d(i)

r − α∇Fr(d(i)
r ) , (5)

g(i+1) = ProxιCPN

(1
r

∑
r

h(i+1)
r

)
. (6)

where g is a global consensus dictionary and α the step size. Like-
wise, computationally demanding components of the algorithm such
as the gradient estimation of the `2 fidelity term are performed in the
frequency domain.

2.2. Local mixed norms

The uniqueness of the solution and success of pursuit algorithms for
the CSC (1) was analyzed in [5] via a reformulation based on the
local `0,∞ pseudo norm, i.e.

(P0,∞) : min
X
||X||0,∞ s.t. DX = S, (7)

where local `0,∞ norm is defined in (8). The motivation for this met-
ric is rooted on the theoretical analysis of the underlying solution for
global `0 or `1 norms, in which X can have a moderate number of
non-zero coefficients, might not be unique due to the sparsity con-
dition (global number of non-zeros must be less than 1

2
(1 + 1

µ(D)
),

where µ(D) quantifies the mutual coherence of the dictionary [19]).
[5] introduced the notion of a local measure of sparsity via the `0,∞
norm and corresponding problem P0,∞ applied to the global feature
vector X, namely

||X||0,∞ = max
i,j,r
||γri,j ||0 (8)

where γri,j is a patch in the feature vector X that groups the elements
that contribute to a specific region of the reconstructed 1D signal2

ŝr = Xr ∗ d. This concept can be naturally extended for dealing
with 2D images as depicted in Figure 1, where γri,j is the portion of
each feature map xr,k that contributes to a given image patch βri,j .

*Σ= γk,rβr

k

i,ji,j

xk,rsr
dk

k

Fig. 1: The {i-th, j-th} patch βri,j of the global system Sr = DXr ,
given by βri,j = Dγri,j .

In our experiments, we use the local `0,∞ norm (of the feature
maps Xk,r obtained during the training stage) as a proxy to evalu-
ate the quality of given learn convolutional dictionary. Our results
show that there exists a high correlation between this local measure
of sparsity and the reconstruction performance of the associated dic-
tionaries in a denoising task.

3. PARAMETERS AND HYPER-PARAMETERS

The CDL problem (2) only presents one parameter to configure,
namely λ which controls the sparsity level of the feature maps. In
the literature, this value goes from 0.05 to 0.2. However, depending
on the solution method of each CDL sub-problem, which are most

2For a more thorough explanation on the structure of the γri,j patch for
1D signals, see [5]
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Fig. 2: From left to right using training set sizes of 25, 50 and 75 images. In blue lines, we plot the average normalized PSNR for some values
of filter size on a denoising task (only three L values are selected in order to avoid cluttering in the graphs), whereas in red lines we plot the
corresponding `0,∞ norm of the feature maps (obtained once the training stage is finished) for several more values of L when varying the
FB’s cardinality on the training stage.

commonly the ADMM and APG frameworks, additional parameters
that impact the convergence ratio come into consideration.

In the ADMM case, [9] empirically established a relation for
the penalty parameters of feature and dictionary sub-problems with
respect to λ and the training set size, respectively. Furthermore,
most of the works [11],[13],[14] selected the optimal parameters via
grid search. In the APG case, on the other hand, [12] introduced
a closed form solution for the optimal step size α at each iteration
as a function of the fidelity term and the feature maps. All these
approaches have addressed the search for the optimal algorithm pa-
rameters corresponding to each framework’s domain; however, to
the best of our knowledge, no works have attempted to study the
impact of hyper-parameters such as filter size or FB’s cardinality on
the performance of the resulting dictionary filters in the context of
convolutional sparse coding.

4. RESULTS

The experiments consisted in evaluating the performance of differ-
ent learned dictionaries in terms of the normalized PSNR metric,
described in Section 4.1, for the denoising task. These experiments
were carried out on a standard desktop computer equipped with an
Intel i7-7700K CPU (4.20 GHz, 8MB Cache, 32GB RAM).

• Learning stage: Non-separable dictionaries, with different filter
sizes {L × L: 8 ≤ L ≤ 72} and FB’s cardinalities {K : 6 ≤
K ≤ 72}, were estimated using three training set sizes, sparsity pa-
rameter λ = 0.1 and 500 iterations. The training sets used for these
experiments contained batches of 25, 50 and 75 gray-scale images
of size 256 × 256 pixels, cropped and re-scaled from a set of im-
ages obtained from the MIRFFLICKR-IM dataset [20]. For learning
non-separable dictionary filters, we used the APG consensus based
algorithm [14] which is publicly available in [21].

• Testing stage: We used eight standard images (such as Man-
drill, Peppers, Barbara, etc.) that were corrupted with AWGN with
variance σ2 = 0.04. The denoising algorithm corresponds to the
ADMM-based MATLAB code of the SPORCO library available in
[22]. In order to ensure a fair comparison, since the testing algo-
rithm has a sparsity-regularizing parameter λ, a search grid over
λ ∈ [0.001 , 0.95] was used to find the optimal value that provides

the best PSNR for each learned dictionary. Furthermore, we per-
formed 5 realization per evaluated case, and averaged the scores to
obtain the final PSNR.

4.1. Evaluated metric

In the denoising process, the computed PSNR values differ in scale
among the evaluated images, as can be observed in Table 1. The
PSNR values estimated using Mandrill image range from 20.76 dB
to 21.2 dB, while using the Pepper image the values are a little
higher, ranging from 21.41 dB to 25.41 dB approximately. In or-
der to provide a global metric across the test images, we normalized
the PSNR by dividing the resulting values obtained from different
filter sizes and FB’s cardinalities by the maximum one attained for
each image. This new metric is represented as

Normalized PSNR(i, l, k) =
PSNR(i, l, k)

max{PSNR(i, :, :)} , (9)

where (i, l, k) are the image, filter size and candinality index.
Furthermore, we use the local mixed `0,∞ norm of the feature

maps obtained once the training stage is finished, detailed in Section
2.2 as a measure of sparsity, since it can naturally provide a more
meaningful insight of the sparse structure of the reconstructed result
than standard global norms.

PSNR(i, l, k)
Image L\K 6 12 · · · 48 72

Mandrill

8 20.76 20.79 · · · 20.76 20.76
12 20.90 20.97 · · · 21.01 21.01
...

...
...

. . .
...

...
72 20.94 21.06 · · · 21.20 21.20

Peppers

8 24.41 24.42 24.40 24.40
12 24.90 24.91 · · · 24.91 24.91
...

...
...

. . .
...

...
72 25.12 25.30 · · · 25.41 25.41

Table 1: PSNR comparison using different learned non-separable
dictionaries for the denoising task, where L correspond to the filter
size and K to the FB’s cardinality.
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Fig. 3: Comparison of the average normalized PSNR scores (denoising task) w.r.t. the FB’s cardinality (top row) and the filter size (bottom
row) when using training set sizes of 25, 50 and 75 to learn the convolutional dictionaries. It is worth noting that the resulting plots of the
average normalized PSNR scores w.r.t. the filter size are akin to a positive skew bell shape curve, where their skewness depends on the
training set size; in green dash line, we remark a region (approximately) greater or equal to the median of the skew bell shape curve.

4.2. General analysis

It is worth mentioning that we report the average normalized PSNR
scores for the eight test images in our computational results. In Fig-
ure 2, we jointly plot the average normalized PSNR scores (denoi-
sing task) along with the corresponding local `0,∞ norm of the fea-
ture maps obtained once the training stage is finished for the selected
values of filter sizes and FB’s cardinality. We can observe that going
above a certain cardinality value (18 − 24 filters) has a negligible
effect on the sparsity (measured by the `0,∞ norm) of the solution.
We note that this value is remarkably close to the bound in which
the average normalized PSNR scores stop rapidly increasing, which
contributes to establishing the existence of a lower bound for FB’s
cardinality.

In Figure 3, we assess more broadly the changes of the average
normalized PSNR scores through the FB’s cardinality and the filter
size. By observing the top row, we can appreciate, in most of the
curves, a steady increment in terms of normalized PSNR up to 30
filters, after which they are almost constant. In this context, we note
that a filter bank composed of 30 filters requires a smaller degree of
computational resources and processing time with respect to larger
ones that attain comparable performance.

Moreover, in Figure 3, bottom row, it can be observed that when
the filter size is varied, the curves describe a (positive) skew bell
shape, whose skewness increase with the training set size; vertical
green dash lines are used it highlight a region (approximately) where
the average normalized PSNR scores are greater o equal to their cor-
responding median value. For small training sets such as 25 images,
the curve width that limits the best normalized PSNR values is nar-

row. This range becomes wider when increasing the training set size.
Particularly, small filter sizes such as 8×8 and 12×12 that have been
used in several works [9],[10],[12],[13], in which the main objective
was to provide new computationally efficient algorithms with mini-
mal loss in performance. However, a remarkable benefit in terms of
performance can be achieved when using the filter size of 24 × 24
(lower bound). Although not the optimal size, the difference in per-
formance when increasing the filter size above this lower bound is
negligible.

5. CONCLUSIONS

We have presented a careful analysis of how hyper-parameters such
as filter size and filter bank’s cadinality affect the reconstruction
performance in terms of PSNR for a denoising task in the context
of convolutional dictionary learning. In contrast to the small filter
sizes commonly used in the literature, we have observed a remark-
able benefit in terms of performance when using the moderate filter
size of 24 × 24 (lower bound). We can also conclude that there is
a direct relationship between the `0,∞ norm of the feature maps in-
duced by the FB’s cardinality and the reconstruction metric used in
the denosing task, which indicate the existence of a lower bound for
the cardinality at approximately 24 to 30 filters.
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