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Abstract—We propose the use of Temporal Convolutional
Networks for audio-based beat tracking. By contrasting our
convolutional approach with the current state-of-the-art recur-
rent approach using Bidirectional Long Short-Term Memory, we
demonstrate three highly promising attributes of TCNs for music
analysis, namely: i) they achieve state-of-the-art performance on
a wide range of existing beat tracking datasets, ii) they are well
suited to parallelisation and thus can be trained efficiently even
on very large training data; and iii) they require a small number
of weights.

Index Terms—Beat Tracking, Music Signal Processing, Con-
volutional Neural Networks

I. INTRODUCTION

The task of musical audio beat tracking has been well-

established over the last twenty-five years [1]. While the goal

of estimating a sequence of quasi-periodic time instants to

reflect how a human listener would synchronise their taps

to the beat of the music has remained largely unchanged,

there has been a shift away from purely signal processing-

based approaches to those incorporating machine learning, and

most recently deep learning. One means of understanding this

change is to consider how early approaches to beat tracking

relied on the use of onset strength functions as the primary

input representation. Given such an input containing peaks at

onset locations, the aim was to identify and track a latent

periodicity and subsequently (or simultaneously) identify the

subset of these peaks most likely to correspond to the beat

of the music. In this sense, the aim was to recover a hidden

sequence of beats from an observed representation related to

musical onsets.

In an effort to filter out peaks that were unlikely to cor-

respond to beats, Davies et al. [2], derived a so-called beat

emphasis function as the linear combination of sub-band onset

strength functions weighted by their respective beat strength.

While effective in enhancing periodic peaks in the onset

strength functions it yielded only a moderate improvement

over existing state of the art approaches (e.g., [3]). A radically

different approach was proposed by Böck and Schedl [4] who

reformulated the beat tracking task using Recurrent Neural
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Networks (RNNs), specifically, a Bidirectional Long Short-

Term Memory (BLSTM) model, to output a beat activation

function (with peaks only at beat locations) given a log

magnitude spectrogram input representation and a training

dataset of manually annotated beat locations. In this way, a

detected sequence of beat locations could be obtained simply

by peak-picking the beat activation function.

Limitations in both the amount of training data and the

variable quality of the annotations led to more sophisticated,

and ultimately more successful, approaches for obtaining beat

times from imperfect beat activation functions. These included

the selection between multiple trained models adapted to

different types of musical content and the use of a dynamic

Bayesian network (DBN) for decoding the beat activation

function [5], with further gains possible by the combined

modelling of beat and downbeat information [6], a step that

echoes the probabilistic approach of Klapuri et al. [3] which

simultaneously estimated beat, downbeat, and tatum levels.

In spite of the inclusion of more sophisticated post-

processing applied to the beat activation function and the

considerable improvements obtained from access to more

training data, the core BLSTM approach [4] has remained

essentially unchanged, perhaps due to the inherent modelling

power of recurrent models for sequential data. Nevertheless,

recurrent models are very hard to train and possess certain

limitations, including: the vanishing gradient problem, diffi-

culty in interpreting the different internal layers of the model,

and a learning approach which doesn’t lend itself to efficient

parallelisation using GPUs.

Convolutional Neural Networks (CNNs) on the other hand,

and particularly for image processing tasks, are amenable

to exposing the representations held in different layers [7].

Furthermore, CNNs are highly parallelisable and can thus

be trained very efficiently on GPUs. For the task of beat

tracking they have only been deployed to predict local fea-

tures (e.g., [8]) or model beat sequences with (large) filters

which extend over a context of several hundred frames [9].

Recently, convolutional recurrent neural networks (CRNNs)

have emerged in an attempt to leverage the modelling power

of both CNNs and RNNs, where recurrent layers are attached

to the output of convolutional models [10], [11].

In this paper, we explore the ability of Temporal Convo-

lutional Networks (TCNs) [12] for a sequential learning task,
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namely musical audio beat tracking. Having first appeared in

the well-known WaveNet model [13], TCNs perform dilated

convolutions (i.e., convolutions across sub-sampled input rep-

resentations) for learning sequential/temporal structure. In this

way, they retain the parallelisation property of standard CNNs,

and have been shown to outperform recurrent approaches

on a range of sequential learning problems [12]. While the

WaveNet approach used the raw audio waveform as input,

we reformulate the current state-of-the-art approach for beat

tracking [6], by substituting the BLSTM with a TCN and

applying it to an input representation derived from a log

magnitude spectrogram. In doing so, we demonstrate the TCN

approach is able to perform on par with the state of the art on

existing annotated beat tracking datasets, that it can be trained

far more efficiently from a computational perspective, and it

also benefits from a very small number of weights (21, 809)

which is in stark contrast to many existing deep learning

approaches, which can have millions of trainable parameters,

and roughly a third of the BLSTM method [4].

The remainder of this paper is structured as follows. In

Section II we describe our TCN approach for beat tracking.

This is followed in Section III by an objective evaluation

against the current state of the art. In Section IV we discuss

the impact of our approach and propose areas for future work.

II. APPROACH

A. Overview of existing state of the art

We base our approach around the model first presented by

Böck and Schedl [4], and later extended in [5], [6] whose

main processing pipeline is shown in the left hand side of

Fig. 1. Given a mono audio input signal, sampled at 44.1 kHz,

the input representation is derived from a set of log magni-

tude spectrograms which are grouped to have approximately

logarithmic frequency spacing between adjacent bins. Three

such spectrograms are calculated at a fixed hop size of 10ms

with increasing window sizes of 23.2ms, 46.4ms and 92.9ms.

From each, the per-bin first-order difference spectorgram is

calculated, where only the positive differences are retained to

capture the energy rise in individual frequency bands. All of

these spectrogram representations are vertically stacked, and

this multi-resolution input representation is then passed to a

three layer BLSTM, with each layer having 25 recurrent units.

In [4], the final beat locations were obtained by peak picking

the beat activation function, however in [5], this processing

step was replaced by a DBN approximated via a hidden

Markov model (HMM). For more details see [4], [5].

B. Proposed reformulation using TCNs

An overview of our proposed approach is shown in the flow

chart on the right of Fig. 1. By comparing the two processing

pipelines, that of the existing state of the art (left), and our

proposed method (right), we can observe: i) a simplification

in the input representation, which replaces six spectrogram

type inputs with just one and thus greatly reduces the input

dimensionality; and ii) the inclusion of a set of convolution and

max pooling layers prior to the main sequence learning model,
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Fig. 1. Comparison between existing state of the art (left) with our proposed
approach (right). The neural network blocks are shaded light grey.

the TCN, which replaces the BLSTM network. Our goal here

is to minimise the need for explicit design choices in the front-

end to our beat tracker, and thus place greater emphasis on

what can be learned from a “simpler” input representation.

1) Input and Target Representations: As the initial input

representation we use a single log magnitude spectrogram

with a hop size of 10ms and a window size of 46.4ms

(2048 samples). A logarithmic grouping of frequency bins with

12 bands per octave provides an input representation with

a total of 81 frequency bands from 30Hz up to 17 kHz, as

summarised in the Signal Conditioning section of Table I.

In the context of beat tracking, we are seeking to predict a

beat activation function from this input representation which

exhibits peaks at likely beat locations and can be used to

recover an output sequence of beat times. To this end, we

treat the beat tracking problem as a binary classification

task, where annotated beat locations are first quantised to

the temporal resolution of the input representation, and then

represented as training targets. The goal is then to predict

the likelihood of a beat occurring at any given time frame

of the log magnitude spectrogram. Following the strategy of

[14] for onset detection, we widen the temporal activation

region around the annotations to include two adjacent temporal

frames on either side of each quantised beat location and

weight them with a value of 0.5 during training.

2) Convolutional Block: While the log magnitude spectro-

gram could be passed directly to the TCN, we first seek to

learn some compact intermediate representation. To this end,

we employ three convolutional layers: the first two layers with

16 filters of size 3 × 3 with subsequent max pooling over 3

bins in the frequency direction; and a third with 16 filters of
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TABLE I
OVERVIEW OF SIGNAL PROCESSING AND LEARNING PARAMETERS

Signal Conditioning

Audio sample rate 44.1 kHz
Window shape Hann

Window & FFT size 2048 samples

Hop size 10ms
Filterbank freq. range 30 . . . 17000Hz
Sub-bands per octave 12

Total number of bands 81

Conv. Block

Number of filters 16, 16, 16

Filter size 3× 3, 3× 3, 1× 8

Max. pooling size 1× 3, 1× 3, —
Dropout rate 0.1

Activation function ELU

TCN

Number of stacks 1

Dilations 2
0,...,10

Number of filters 16

Filter size 5

Spatial dropout rate 0.1

Activation function ELU

Training

Optimizer Adam

Learning rate 0.001

Batch size 1

Output activation function sigmoid

Loss function binary cross-entropy

size 1 × 8 without pooling. In this way, small (overlapping)

spectrogram snippets with a context of 5 frames get reduced

to a single frame and 16 features. The exponential linear unit

(ELU) [15] is used as activation function in the convolutional

layers, and a dropout [16] rate of 0.1 applied afterwards. All

parameters are summarised in the Conv. Block section of Table

I. By learning these filters within the network we can derive

an intermediate representation which is better adapted to the

input data and much smaller than the hard-coded choice of the

bin-wise temporal difference.

3) Temporal Convolution Network: The principal means by

which the TCN is able to capture sequential structure is by

learning filters via dilated convolutions. In our case, the input

to the TCN is a 16-dimensional feature vector derived from

the magnitude spectrogram by the convolutional block, which

retains the same temporal resolution. The learning target for

the TCN is to predict the beat locations from annotated training

data as described in Section II-B1. By working on a highly

sub-sampled feature representation compared to the raw audio,

we can obtain a large temporal receptive field with far fewer

layers and weights than the raw audio domain equivalent.

The TCN, as presented in [13], is highly parameterisable,

with the principal degrees of freedom being: the number of

TCN filters, the kernel size (i.e., shape of the filters), the

number of layers, their dilation rates, and the number of times

the model can be stacked. While the number of filters and their

shape are quite standard properties of CNNs, the number of

dilations, their rate, and the number of stacks of the model, are

what contribute to the width of the receptive field of the model.

The TCN illustration shown in Fig. 2 contains four layers with

an exponentially increasing dilation rate and demonstrates how

the output depends on relations with time points which are

potentially quite distant. In contrast to RNN approaches, they

are not sequentially connected. Indeed, it is this lack of RNN-

like long-term sequential connections which contribute to the

highly parallelisable structure of the TCN, and thus drastically

increase the computational efficiency when training on GPUs.

Two important distinctions between our TCN and the origi-

nal formulation [13] are that we replace all activation functions

within the TCN with ELUs [15], and modify it to operate

non-causally, rather than in a purely causal way as defined in

[12]. In practice, the latter modification means that for any

given temporal frame of the input, the (dilated) convolutions

extend both forwards and backwards in time. For purely causal

operation the dilated convolutions are only performed using

past data up to the current temporal frame with no access to

future information in the signal. In the context of real-time

beat tracking, such causal processing would be essential (as

well as the need to adapt many other components of the beat

tracking system), but for this paper where all other processing

steps are performed offline, we allow full access to the input

signal, and seek to benefit from the additional temporal context

provided by the non-causal convolutions.

Concerning the specific parameterisation of our TCN, we

have attempted to strike a balance between high beat tracking

accuracy and the simplicity of the model (i.e., minimising the

number of weights to learn). To this end, we propose the

parameters shown in the TCN section of Table I, and leave

a more thorough optimisation of the parameters as a topic for

future work. We train the model with the Adam optimiser [17],

a batch size of 1 and a learn rate of 1e−3. We reduce the learn

rate by a factor of 5 if the loss on the disjoint validation set

reaches a plateau and stop training if no improvement in the

validation loss is observed for 50 epochs.

4) Obtaining beat predictions: The output of the TCN is a

one dimensional beat activation function, intended to exhibit

peaks at likely beat locations and be close to zero at all other

points in time. For musical examples where the beat activation

function approximates this idealised structure, the output can

be obtained by a simple peak-picking process. In practice, the

beat activation function often has peaks at non-beat locations,

or fails to produce peaks at annotated locations, and thus peak-

picking alone is typically insufficient to provide a plausible

beat tracking output. To this end, [5] proposed using a DBN to

decode the beat activation function which yields better global

alignment of beats. In this work we use the enhanced and more

efficient state space proposed by Krebs et al. [18]. Given the

beat activation function produced by our TCN has the same

temporal resolution and target structure as in [5], we directly

reuse this existing DBN together with the default parameters

given in [18]: a tempo range of 55–215 beats per minute, and

the transition-λ, which aims to control the ability of the model

to react to tempo changes, at a value of 100.
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Fig. 2. Overview of the TCN structure (adapted from the original version [13]) to demonstrate non-causal operation. The grey dashed lines show the network
connections shifted back one time step.

III. EXPERIMENTS AND RESULTS

To determine the performance of our proposed TCN beat

tracking system, we follow the de facto objective evalua-

tion methodology by measuring beat tracking accuracy on

annotated datasets and comparing it against state-of-the-art

reference algorithms [19]. To permit the use of existing

annotated datasets, both to train our model and measure its

performance, we use 8-fold cross validation. We ensure the

separation between testing and training data in each iteration

of the cross validation, by using six folds for training, one for

validation, and the remaining fold for testing, and rotate the

folds eight times until each fold has uniquely been used for

testing. The datasets used for cross validation are shown in

the upper part of Table II. To provide some insight into the

performance on totally unseen data, the GTZAN dataset [20]

with the beat annotations from [21] is included as test data,

but excluded from training, both for our TCN approach and

the two reference state-of-the-art methods [5], [6].

TABLE II
OVERVIEW OF THE DATASETS USED FOR TRAINING AND EVALUATION.

Dataset # files length

Ballroom [22], [23] 1 685 5 h 57 m
Beatles [19] 180 8 h 09 m
Hainsworth [24] 222 3 h 19 m
Simac [25] 595 3 h 18 m
SMC [26] 217 2 h 25 m

GTZAN [20], [21] 999 8 h 20 m

In Table III we list the beat tracking results using the widely

adopted set of F-measure, continuity-based evaluation scores

(CMLc, CMLt, AMLc, AMLt), and Information Gain (D),

with the latter measured in bits. For further details, see [19].

Note that the results of [5] differ from the original publication

since the DBN used for beat inference was updated to be

the same as the one used in this paper which yields better

performance and is computationally more efficient (cf. Section

II-B4, [18]). Results on GTZAN were computed by averaging

the predictions of all models trained with cross validation (i.e.,

model bagging) before inferring the final beat locations with

the DBN.

1We removed the 13 duplicates identified by Bob Sturm:
http://media.aau.dk/null space pursuits/2014/01/ballroom-dataset.html

TABLE III
OVERVIEW OF BEAT TRACKING PERFORMANCE.

F-measure CMLc CMLt AMLc AMLt D

Ballroom

TCN 0.933 0.864 0.881 0.909 0.929 3.456
BLSTM [5] 0.917 0.832 0.849 0.905 0.926 3.539

BLSTM [6] 0.938 0.872 0.892 0.932 0.953 3.397

Hainsworth

TCN 0.874 0.755 0.795 0.882 0.930 3.518
BLSTM [5] 0.884 0.769 0.808 0.873 0.916 3.507
BLSTM [6] 0.871 0.732 0.784 0.849 0.910 3.395

SMC

TCN 0.543 0.315 0.432 0.462 0.632 1.574

BLSTM [5] 0.529 0.296 0.428 0.383 0.567 1.460
BLSTM [6] 0.516 0.307 0.406 0.429 0.575 1.514

GTZAN

TCN 0.843 0.695 0.715 0.889 0.914 3.096
BLSTM [5] 0.864 0.750 0.768 0.901 0.927 3.071
BLSTM [6] 0.856 0.716 0.744 0.876 0.919 3.019

Inspection of Table III demonstrates that across datasets

and evaluation methods, the performance of our proposed

approach is highly comparable to the existing state of the

art, with this pattern holding both for those datasets included

in the cross validation and the withheld GTZAN dataset. For

the Ballroom, Hainsworth, and GTZAN datasets performance

is on a very high level, irrespective of evaluation method.

Conversely, the SMC dataset reveals a significant and expected

drop in performance across all methods due to the large

proportion of highly challenging musical excerpts. However,

performance is highest for our proposed method.

Perhaps what is most noteworthy about our TCN approach is

that it can maintain competitive performance but with two dis-

tinct computational advantages over the state of the art. Putting

aside the approach in [6] which also estimates downbeats and

is thus far more complex, our TCN approach uses fewer than

35% of the weights of the BLSTM [5] (21, 809 vs. 67, 301).

Furthermore, the learning of the TCN weights occurred at

a rate of approximately 2 seconds/hour of audio on a recent

GPU, compared to 2minutes/hour of audio for the BLSTM,

offering a 60x speed-up in training time. Put in context, this

implies that our TCN can encode knowledge about the beat

structure in music in a more compact representation than the

BLSTM, and it can learn this information at a considerably
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faster rate. This holds significant promise for learning on very

large annotated datasets in practical computation time, i.e. in

the order of hours rather than weeks, and therefore facilitating

multiple training runs with different hyperparameter settings.

One limitation of our proposed approach is that the inference

is moderately slower than the BLSTM [5], but still much faster

than real-time, processing 1 minute of audio in roughly 4–5 s

on a recent laptop using only the CPU.

IV. DISCUSSION AND CONCLUSIONS

We have proposed a new approach for musical audio beat

tracking using Temporal Convolutional Networks. Inspired

by the well-known WaveNet generative model for raw audio

signals [13], we re-purpose it to perform dilated convolu-

tions along the temporal dimension of a jointly learned 16

dimensional feature vector in order to predict the locations

of musical beats. Since the temporal resolution of the time-

frequency representation is drastically lower than that of raw

audio signals, this leads to a substantial decrease in the number

of weights, which can be trained extremely efficiently, and is

consequently less prone to overfitting.

In comparison with state-of-the-art recurrent beat trackers,

we demonstrate that our TCN approach can achieve equivalent

performance across a diverse range of annotated musical ma-

terial, and improved performance on the dataset considered the

most challenging for beat tracking. Furthermore, this high per-

formance is embedded in a model which uses proportionally

far fewer dimensions in its input representation by leveraging

convolutional layers to implicitly learn a compact feature

representation which is able to model the (local) temporal

structure without explicitly encoding this information in the

input representation, as done by existing recurrent approaches.

These promising initial results achieved with the TCN sug-

gest significant potential for future work, including: learning

the beats directly from the audio signal itself; simultaneously

modelling beat and downbeats; developing a real-time ap-

proach using a causal TCN; and exploring TCNs for other

time-based music analysis tasks such as chord recognition,

note transcription, and structural segmentation.
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[23] F. Krebs, S. Böck, and G. Widmer, “Rhythmic pattern modeling for

beat and downbeat tracking in musical audio,” in Proc. of the 14th Intl.

Society for Music Information Retrieval Conf., 2013, pp. 227–232.
[24] S. Hainsworth and M. Macleod, “Particle filtering applied to musical

tempo tracking,” EURASIP Journal on Applied Signal Processing,
vol. 15, pp. 2385–2395, 2004.

[25] F. Gouyon, “A computational approach to rhythm description — audio
features for the computation of rhythm periodicity functions and their
use in tempo induction and music content processing,” Ph.D. disserta-
tion, Universitat Pompeu Fabra, 2005.

[26] A. Holzapfel, M. E. P. Davies, J. R. Zapata, J. L. Oliveira, and
F. Gouyon, “Selective sampling for beat tracking evaluation,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 20, no. 9,
pp. 2539–2548, 2012.

2019 27th European Signal Processing Conference (EUSIPCO)


