
Self-Localization of Distributed Microphone Arrays
Using Directional Statistics with DoA Estimation

Reliability
Szymon Woźniak
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Abstract—This paper addresses the problem of self-localization
of distributed microphone arrays from microphone recordings
by following a two-step optimization procedure. In the first step,
the relative geometry of the sources and arrays is inferred by
the proposed maximum likelihood estimator. It is derived under
the assumption that the acquired unit-norm vectors pointing
towards the unknown source positions follow a von Mises-Fisher
distribution in a D-dimensional space. In the second step, the
absolute positions and synchronization offsets between the arrays
are estimated from the inferred relative geometry by using the
Least Squares procedure. To improve the accuracy of the method,
we propose as well the use of a reliability measure for the
estimated Directions of Arrival based on the presented directional
statistics model. The results of numerical experiments confirm the
validity of the proposed approach.

Index Terms—microphone arrays, wireless acoustic sensor
networks, distributed sensor networks, geometry calibration,
maximum likelihood, directional statistics, circular statistics

I. INTRODUCTION

Joint processing of the microphone signals acquired by
distributed devices allows to localize sound sources in 2D/3D
or to enhance signals coming from a set of desired posi-
tions [1], [2]. Information about the geometrical arrangement
of the recording devices enables the exploitation of the spatial
information present in the microphone signals. Unfortunately,
in practice, the set-up is created in an ad-hoc fashion and the
actual positions of the distributed devices are unknown.

The localization of scattered microphones using controlled
sources was performed in [3] based on Time of Flight (ToF)
measurements and in [4], [5] based on Time of Arrival (ToA)
measurements. For an unknown source, self-localization of
scattered microphones based on Time Difference of Arrival
(TDoA) measurements was presented in [6], [7], [8]. The
relative geometry of the distributed arrays up to a scaling
constant can be found using Direction of Arrival (DoA)
estimates only [9], [10], [11]. However, inference of the
absolute microphone array positions requires the estimation
of the scaling factor from the TDoA information, e.g. as done
in [9], [10], [11], [12]. Furthermore, exploiting inter-array
TDoAs, the synchronization offsets between the arrays can
be found in addition to the geometry scaling factor [12].

In this paper, we present a two-step optimization method
for estimating the positions of the distributed microphone
arrays from the recorded microphone signals of unknown and
uncontrolled sound sources. We focus on increasing the accu-
racy of the relative geometry estimation based on the DoAs
estimated at each array, while the second optimization step in
which the scaling factor and synchronization offsets are found
is performed as described in [12]. The proposed maximum
likelihood (ML) estimator for the relative geometry inference
is derived under the assumption that the unit-length direction
vectors pointing towards the unknown source positions follow
a von Mises-Fisher (vMF) distribution [13]. The proposed
cost function enables incorporating a reliability measure of
the DoA measurements, which is shown here to increase the
accuracy of the relative geometry inference, and in turn also
the accuracy of the absolute array positions. The suitability of
directional statistics for addressing the microphone array self-
calibration problem has already been suggested in other works
closely related to this contribution. The cost function in [11]
was derived assuming a von Mises distribution of DoAs.
Interestingly, a similar cost function was obtained heuristically
from basic geometrical relations in [9], [10]. The contribution
of this paper includes (i) the formulation of the ML cost
function with directional statistics, which is derived using
the von Mises-Fisher distribution, and (ii) the proposal of an
adaptive DoA estimation reliability method motivated by the
Cramer-Rao Bound (CRB) for DoAs.

II. PROBLEM FORMULATION

Consider a D-dimensional Euclidean space RD spanned by
standard basis (e1, e2, . . . , eD) as an ambient space, in which
N distributed microphone arrays, interchangeably referred to
as nodes, record S sound events generated by a source at
different locations. The position of the i-th node is denoted by
vector ni ∈ RD, and the positions of all nodes are grouped
into the matrix N = [n1,n2, . . . ,nN ]T ∈ RN×D, where
(·)T denotes the transposition operator. Orientation of the i-th
node in space is determined by its local orthonormal basis
(bi,1,bi,2, . . . ,bi,D). The transformation matrix defined as
Bi = [bi,1,bi,2, . . . ,bi,D]T ∈ RD×D performs an isometric
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linear mapping from the standard basis to the local basis of the
i-th node. Moreover, we assume that Bi is an element from
a special orthogonal group SO(D). The position of the j-th
sound event is denoted as vector sj ∈ RD, and the positions of
all events are represented by matrix S = [s1, s2, . . . , sS ]T ∈
RS×D. The position of the j-th sound event in reference to
the position of the i-th node in its local basis can be expressed
by vector pi,j ∈ RD defined as

pi,j = Bi

(
sj − ni

)
. (1)

Figure 1 depicts the geometric relation for three distributed
nodes and a single sound event in a D = 2 dimensional space.

Each node measures two types of quantities per sound event.
The first one is the DoA of the j-th event at the i-th node and
it is denoted by vector di,j , while the TDoA of the j-th event
between the i-th node and the k-th node is denoted as τ(i,k),j .
The DoA and TDoA models are given, respectively, by

di,j =
pi,j∥∥∥pi,j
∥∥∥

and τ(i,k),j =

∥∥∥pi,j
∥∥∥−

∥∥∥pk,j
∥∥∥

c−1
+δi−δk, (2)

where ‖·‖ denotes the L2 norm, c is the speed of sound, and
δi and δk are the synchronization offsets for the i-th and k-th
nodes between the local and reference timeline. Offsets of all
arrays are grouped into a vector δ = [δ1, δ2, . . . , δN ]T ∈ RN .

The aim is to estimate the positions and orientations of
all arrays stored in matrices N and B, and the positions of
all sound events S. Since the main focus of this work is to
increase the accuracy of the relative geometry estimation based
on the DoA information, in the next section we derive the
proposed maximum likelihood (ML) estimator based on direc-
tional statistics with an adaptive DoA estimation reliability.

III. PROPOSED METHOD

In this section, we present a two-step ML optimization
for microphone array self-localization. The ML estimator for
finding the relative array geometry using directional statistics
is derived in Sec. III-A. The method to incorporate robustness
against DoA estimation errors into the proposed framework is
presented in Sec. III-B. The final optimization step to obtain
the absolute geometry and synchronization offsets is briefly
discussed in Sec. III-C.

A. Relative geometry estimation using directional statistics

In a D-dimensional Euclidean space, a unit-length vector
di,j ∈ RD given in (2) defines the direction of the j-th event
in the local basis of the i-th microphone array. Assuming that
the DoAs follow a von Mises-Fisher (vMF) distribution [13],
the probability density function (PDF) of the measured DoA
given by the unit-length vector ďi,j can be written as

fp

(
ďi,j ; di,j , κi,j

)
≡ Z(κi,j) e

κi,j dT
i,j ďi,j , (3)

where Z(κi,j) denotes the normalization parameter given by

Z(κi,j) =
(κi,j)

D
2 −1

(2π)
D
2 ID

2 −1(κi,j)
, (4)
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Fig. 1. Example geometry with three nodes and one sound event in a two-
dimensional space.

κi,j is the concentration of the PDF around the mean direction
di,j , and Im(κ) denotes the m-order modified Bessel function
of the first kind. Vector di,j ∈ RD denotes the mean unit-
length direction vector, computed by inserting (1) into (2).
Note that the von Mises-Fisher distribution is isotropic on the
(D − 1)-dimensional sphere. Based on the PDF for a single
measurement ďi,j given by (3), the negative log-likelihood
function for all measurements can be written as

LvMF = −
N∑

i=1

S∑

j=1

[
κi,j dT

i,j ďi,j + lnZ(κi,j)
]
. (5)

The problem of finding the relative geometry of the distributed
arrays and sound events can be solved by minimizing the
following cost function

B̂, Ñ, S̃ = arg min
B,N,S

LvMF subject to Bi ∈ SO(D). (6)

Since incorporation of the constraint Bi ∈ SO(D) in an
optimization procedure is non-trivial, one can exploit rotation
matrices as well known generators of SO(D) for D = 2 and
D = 3, and use the following substitution Bi = R(θi), where
R(θi) denotes the rotation matrix by angle vector θi. As a
result, we search for unknown generators Θ = [θ1, . . . ,θN ]
instead of the basis matrix B, and the final problem can be
formulated as

Θ̂, Ñ, S̃ = arg min
Θ,N,S

−
N∑

i=1

S∑

j=1

Gi,j , (7)

Gi,j = κi,j
(sj − ni)

TR (θi)
T

ďi,j∥∥sj − ni
∥∥ + lnZ(κi,j). (8)

Matrices Ñ and S̃ define the relative positions of the dis-
tributed arrays and sound events up to an unknown scaling
factor γ. In order to infer an absolute geometry, i.e. to find
the final positions of sound events and distributed arrays, an
estimate of the scaling factor γ̂ is required.

B. Incorporating reliability of DoA estimates

In this section, we present a method to incorporate DoA
estimate robustness into the directional statistics-based relative
geometry estimator proposed in Sec. III-A. Room reverber-
ation, noise, and array imperfections are the main factors
affecting the accuracy of DoA measurements in real acoustic
conditions. With an increasing distance between the sound
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event and the array, the ratio between the power of the
direct-path event signal and the power of room reverberation
plus noise decreases, resulting in increased DoA measurement
errors. To take this consideration into our proposed framework,
we propose to relate the reliability of the DoA estimates with
the distance between the array and the sound events.

The distance-dependent concentration of the von Mises-
Fisher distribution [13] can be expressed using the following
mapping function

κi,j = ψκ Γ

(
−βκ

∥∥∥pi,j
∥∥∥

2

− Cκ
)

+Mκ, (9)

where Γ(x) = [1 + exp(−x)]−1 is a sigmoid function,
parameter βκ defines the steepness of the transition region,
Cκ defines the sigmoid shift, and parameters ψκ and Mκ

determine the maximum and minimum sigmoid values.
In order to determine the range of values in (9), the relation

between the variance and concentration of the von Mises-
Fisher distribution needs to be determined. The theoretical
relation for variance is given by [13], [14]

σ2 = 2

(
1− ID/2(κ)

ID/2−1(κ)

)
. (10)

Note that due to numerical instabilities equation (10) can be
computed only for a limited range of κ and obtaining an
inverse equation for concentration as a function of variance
is not straightforward. To this end, in this work we apply
an asymptotic approximation for κ derived in [14] which
was shown to match well as inverse function to (10). An
approximate solution for the concentration is given by [14]

κ̂ =
r̄D − r̄3

1− r̄2
, (11)

with
r̄ =

ID/2(κ)

ID/2−1(κ)
=

2− σ2

2
(12)

which enables conveniently expressing concentration as a
function of variance σ2. Figure 2(a) and (b) depict the standard
deviation σ as a function of the concentration parameter κ for
D = 2 and D = 3 spatial dimensions, and the approximated
concentration κ̂ as a function of σ in 2D and 3D.

We can next set the maximum and minimum values of the
sigmoid such that the concentration κ in (9) takes the values
from within the desired range. As observed in Fig. 2, for low
concentration values, e.g. κ� 1, a nearly uniform distribution
is obtained, which is undesired. On the other hand, very high
values of concentration would indicate very high confidence
about the estimated direction vectors, which is usually not the
case in practice. To this end, we propose to set the sigmoid
parameters Mκ and ψκ based on the desired minimum and
maximum standard deviation values using equations

Mκ =
r̄minD − r̄3

min

1− r̄2
min

(13)

and
ψκ =

r̄maxD − r̄3
max

1− r̄2
max

−Mκ , (14)
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Fig. 2. (a) Theoretical standard deviation σ as a function of concentration κ
and (b) approximated concentration κ̂ as a function of standard deviation σ
for the 2D (dashed line) and 3D (solid line) von Mises-Fisher distribution.

where r̄min = 0.5(2 − σ2
min) and r̄max = 0.5(2 − σ2

max). In
order to select σ2

max and σ2
min values which match well the

DoA measurement conditions, we propose to relate them to
the Cramer-Rao bound (CRB) for DoA estimates described in
the Appendix, which depends on several array parameters and
signal-to-noise ratio (SNR). The minimum variance value is
set here based on the CRB given by (21) as σ2

min = CRB,
while its maximum value is set empirically as σ2

max = Aσ2
min,

where A is a heuristically found constant.
Having determined the maximum and minimum sigmoid

values, the sigmoid shape is controlled using parameters βκ
and Cκ. These two parameters can be conveniently set based
on the maximum and minimum values of

∥∥∥pi,j
∥∥∥ for all i, j

pairs. These equations are given as

βκ(ε) =
ε

max
i,j

∥∥∥pi,j
∥∥∥

2

−min
i,j

∥∥∥pi,j
∥∥∥

2 , (15)

Cκ(ε, ϕ) = ε




min
i,j

∥∥∥pi,j
∥∥∥

2

max
i,j

∥∥∥pi,j
∥∥∥

2

−min
i,j

∥∥∥pi,j
∥∥∥

2 − ϕ


 . (16)

Figure 3 depicts example sigmoid shapes for different values
of sigmoid parameters as a function of the shaping variables
ε and ϕ.

Incorporation of the proposed reliability into (7) is imple-
mented as follows. The ML function (7) is solved using a
selected gradient-based optimizer, where O denotes a single
iteration of the optimization. Every G-th iteration of opti-
mization κi,j is reweighted using (9). To this end, βκ(ε) and
Cκ(ε, ϕ) are recomputed every G-th iteration based on pi,j
and sigmoid shape parameters ε and ϕ. In this work, the value
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min ||pi,j ||2 max ||pi,j ||2||pi,j ||2
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Fig. 3. Equation (9) for different parameters ε and ϕ = 0.2 using distances∥∥∥pi,j∥∥∥.

of ε is increased with time to introduce robustness against un-
reliable position estimates found shortly after random position
initialization, while ϕ is kept constant. For convenience, the
proposed reweighting method is summarized in Algorithm 1.

Algorithm 1: Proposed reweighting method
Data: ďij , ϕ, ε1, ε2, ..., εW ,
Result: Θ̂, Ñ, S̃
Initialize: t = 1;w = 1; Θ̂1, Ñ1, S̃1

while convergence is not achived do
if t mod G = 1 and w ≤W then

recompute βκ(εw) using (15)
recompute Cκ(εw, ϕ) using (16)
recompute κi,j for each pair (i,j) using (9)
w ← w + 1

end
Θ̂t+1, Ñt+1, S̃t+1 ← O(Θ̂t, Ñt, S̃t)
t← t+ 1

end

C. Absolute geometry and synchronization offset estimation

The absolute geometry can be retrieved from the relative
geometry using relations

N̂ = γ̂ Ñ and Ŝ = γ̂ S̃ , (17)

where γ̂ is the estimated geometry scaling factor. The re-
quired scaling factor γ̂ and the synchronization offsets δ̂ =
[δ̂1, δ̂2, δ̂3, . . . , δ̂N ]T between the timelines at the arrays and a
reference timeline can be estimated by solving the following
linear least squares (LS) problem [12]

δ̂, γ̂ = arg min
δ,γ

S∑

j=1

N∑

i=1

N∑

k=1

(
γ τ̃(i,k),j + δi − δk − τ̂(i,k),j

)2

,

(18)
where the modelled TDoA τ(i,k),j is given by

τ(i,k),j = γ τ̃(i,k),j + δi − δk (19)

and the TDoA of the j-th event between the i-th and the k-th
array for the relative geometry is given by

τ̃(i,k),j = c−1
(∥∥s̃j − ñi

∥∥−
∥∥s̃j − ñk

∥∥
)
. (20)

Note that (18) can be conveniently solved using the closed-
form solution proposed in [12].

IV. EXPERIMENT DESCRIPTION AND RESULT EVALUATION

In this section, we evaluate the performance of the proposed
self-localization method for S = 20 sound events and N = 10
distributed microphone arrays. The positions of events and
5-element circular microphone arrays are randomly selected
on a 2D horizontal plane located at a height of 1.4 m in
a 10 × 10 × 3.5 [m] room with the reverberation time of
0.3 s simulated using the image-source method [15]. The
microphone signals are synthesized as a convolution of ane-
choic speech of 3 s duration with the simulated room impulse
responses (RIRs), and the white Gaussian noise at −60 dB,
−50 dB and −40 dB level is added to the microphone signals.
In order to focus our investigations on the relative geometry
inference, the DoAs are estimated using the Steered-Response
Power with Phase Transform (SPR-PHAT) method [16], while
the TDoAs are assumed to be known, i.e., they correspond
to the true geometry and synchronization offsets. We choose
the Limited-memory-BFGS optimization algorithm [17] as a
selected optimizer O to iteratively solve problem (7) with the
reliability method described in Algorithm 1. Due to high non-
convexity of the investigated DoA-based cost functions, node
and event positions are initialized by adding position errors
drawn from an isotropic normal distribution with variance of
16 [m] to the ‘ground truth’ positions in order to avoid Monte
Carlo search for good initialization of the positions [18]. Note
that in contrast to [10], [9], the Random Sample Consensus
(RANSAC) [19] algorithm is not applied in order to be able
to verify the gain offered by the proposed DoA reliability
measure. However, note that one could additionally apply
RANSAC in order to improve the robustness of the presented
method to outliers. For incorporating reliability, the following
set of parameters is used: A = 20, ϕ = 0.2, and the value
of ε is increased every 50-th iteration of the optimization
algorithm by ε = 1.25 from the initial value of ε = 0 to
ε = 5. Performance of the proposed method is compared with
the method presented in [12] using the root mean square error
(RMSE) measure between the ‘ground truth’ and estimated
position and synchronization offset values. We show the errors
for the positions of distributed arrays RMSE(N̂), the positions
of sound events RMSE(Ŝ), and the synchronization timeline
offsets RMSE(δ̂). Each presented result is computed by
averaging over the errors for all arrays (or events) and over
10 repetitions of each experiment for 100 random geometries.

Table IV presents the results for the microphone self-noise
levels of −60, −50, and −40 dB in reference to the level of the
source signal if it was collocated with the array, i.e., the further
the source is from the array the lower the SNR becomes.
As can be observed, the proposed method with directional
statistics and measurement reliability achieves a nearly one-
fourth higher array and source position estimation accuracy
and nearly one-third timeline offset accuracy than the existing
method [12] without the in-built reliability. The accuracy of
direction vector estimation in terms of the event-array distance
is shown in Fig. 4 for the proposed method. The depicted
cosine distance is shown to increase nearly exponentially with
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TABLE I
AVERAGED RESULTS FOR 100 RANDOM GEOMETRIES

Noise [dB] Method [12] Proposed method

RMSE(N̂) [m]
−60 0.467 0.315
−50 0.690 0.537
−40 0.861 0.708

RMSE(Ŝ) [m]
−60 0.598 0.463
−50 0.900 0.753
−40 1.261 1.074

RMSE(δ̂) [ms]
−60 1.423 0.783
−50 2.069 1.746
−40 2.591 2.258
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||pi,j || [m]
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ar
cc
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◦ ]

Fig. 4. The cosine distance (error) in degrees between the measured and the
ground truth direction vectors as a function of event-array distance obtained
in the performed experiment.

an increasing distance, apart from the near-field distances.

V. CONCLUSIONS

In this paper, a method for self-localization of the distributed
microphone arrays is discussed. The relative array geometry
is found using the proposed method derived using directional
statistics with DoA measurement reliability. The results of
numerical experiments indicate that an increase in inferred
array position accuracy is achieved by the proposed method.
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APPENDIX

The Cramer-Rao Bound for estimated azimuth and elevation
angles using spherical arrays has recently been derived in [20].
For a circular arrangement, it can be shown that the CRB can
be approximated as:

CRB(di,j) =
D − 1

2M

(
λ

2πR

)2

(SNR)−1

 L∑
l=1

(
dTi,jm

(l)
i

)2−1

,

(21)
where M is the number of snapshots taken by the array,
R is the radius, λ is the wavelength, SNR is the signal-to-
noise ratio, L is the number of sensors in the array and m

(l)
i

is the unit-norm vector indicating the direction of the l-th
microphone within the array.
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[12] S. Woźniak and K. Kowalczyk, “Passive joint localization and synchro-
nization of distributed microphone arrays,” IEEE Signal Process. Lett.,
vol. 26, no. 2, pp. 292–296, Feb 2019.

[13] K. Mardia and P. Jupp, Directional statistics, John Wiley & Sons, 2009.
[14] A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, “Clustering on the unit

hypersphere using von Mises-Fisher distributions,” J. Mach. Learn. Res.,
vol. 6, no. Sep, pp. 1345–1382, 2005.

[15] J. Allen and D. Berkley, “Image method for efficiently simulating small-
room acoustics,” J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 943–950,
1979.

[16] J. DiBiase, H. Silverman, and M. Brandstein, “Robust localization in
reverberant rooms,” in Microphone Arrays, pp. 157–180. Springer, 2001.

[17] R. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,” SIAM J. on Scientific Computing,
vol. 16, no. 5, pp. 1190–1208, 1995.

[18] L. Wang, T. K. Hon, J. D. Reiss, and A. Cavallaro, “Self-localization of
ad-hoc arrays using time difference of arrivals,” IEEE Trans. on Signal
Process., vol. 64, no. 4, pp. 1018–1033, Feb 2016.

[19] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[20] K. Wong, Z. Morris, and C. Nnonyelu, “Rules-of-thumb to design a
uniform spherical array for direction finding—Its Cramér–Rao bounds’
nonlinear dependence on the number of sensors,” J. Acoust. Soc. of
Amer., vol. 145, no. 2, pp. 714–723, 2019.

2019 27th European Signal Processing Conference (EUSIPCO)


