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Abstract—In this paper we consider the structured multilinear
low-rank tensor decomposition problem where group sparsity
is enforced using nuclear norm regularization. We adopt the
recently proposed sequential convex approximation approach to
develop an optimization algorithm suitable for implementation
on modern parallel hardware architectures. An existing opti-
mization algorithm for this non-convex and non-differentable
optimization problem relies on a lifting approach. For large
problem dimensions the lifting procedure is, however, inefficient
as it drastically increases the number of optimization variables.
Our proposed algorithm does not require lifting and directly
operates on the original parameters space. We demonstrate the
performance gains in terms of convergence speed of the proposed
sparse tensor decomposition method for the example of two
dimensional harmonic retrieval.

I. INTRODUCTION

Multidimensional harmonic retrieval and more generally
structured multilinear low-rank tensor decomposition is a
problem that is fundamental in many important applications in-
cluding radar signal processing, direction-of-arrival estimation,
MIMO channel sounding and nuclear magnetic resonance to-
mography. Recently, multidimensional harmonic retrieval has
been successfully applied in the context of channel estimation
in massive MIMO systems [1], [2], [3], [4], [5]. Traditionally,
subspace based methods are used to solve the two- and mul-
tidimensional harmonic retrieval problem [6], [7]. Subspace
methods achieve a satisfactory estimation performance at low
computational complexity. The MUSIC algorithm presented
in [8] can be used to estimate the frequencies of a super-
position of multiple harmonic signals. However, unlike the
one-dimensional harmonic retrieval problem for which the
computationally efficient root-procedure can be applied, in
multidimenisional harmonic retrieval a computationally de-
manding spectral search is required. In [9], [10], [11] search
free methods for two- and multidimensional harmonic retrieval
have been proposed that exploit the multiple shift-invariance
structure of the measurement tensor. In [12] a polynomial
rooting technique for 2D harmonic retrieval has been propose.
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Recently, sparse recovery techniques came into the focus
of parameter estimation, which exhibit the superresolution
property [13]. In comparison to the subspace based methods,
sparse recovery methods show a good performance even
though for a small number of snapshots and do not rely on the
signal covariance matrix estimation. However, sparse recovery
methods require a fine discretization of the parameter grid,
in order to achieve a high resolution and to avoid the basis
mismatch [14]. For uniform linear sampling schemes gridless
sparse recovery methods based on atomic norm minimization
have been proposed in [15], [16] and [17]. In [3] a sparse
recovery method based on nuclear norm minimization is pre-
sented which is also suitable for irregular sampling schemes.
Recently, customized iterative algorithm have been proposed
to efficiently solve the corresponding sparse regularization
problems without the need of using general purpose interior
point solvers. The block coordinate decent method (BCD) [18]
has, e.g., been applied in [19] in the context of row-sparse
signal recovery from multiple measurements. In [3] the succes-
sive convex approximation (SCA) algorithm has been adapted
for rank-sparse recovery in the context of two-dimensional
harmonic retrieval. The drawback of this method is that a
lifting procedure had to be employed to circumvent bilinear
product terms in the optimization. This significantly increases
the number of optimization variables resulting in prohibitive
computational complexity and large memory demands in large
scale problems.

In this paper we propose an alternative SCA algorithm for
structured sparse multilinear low-rank tensor decomposition
which avoids these difficulties and which is therefore suitable
for large scale optimization. The algorithm is fully parallel,
involves only simple operations and is therefore well suited
for implementation on parallel hardware architectures and
graphical processing units (GPUs).

II. SIGNAL MODEL

We consider the two-dimensional (2D) harmonic retrieval
problem where a superposition of P source signals with 2D
frequencies {(θp, φp)}, (p = 1, . . . , P ) is recorded over L
snapshots. Let, a(θ) = [1, e−jπθ, . . . , e−jπ(M−1)θ]T ∈ CM
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and b(φ) = [1, e−jπφ, . . . , e−jπ(N−1)φ]T ∈ CN denote the
frequency responses along the first and the second sampling
axes with sample dimensions M and N , respectively for
θ = [−1, 1], φ = [−1, 1]. The measurements form a three-
dimensional tensor

Y =
P∑
p=1

ap ◦ bp ◦ hp + W ∈ CM×N×L (1)

where, hp(`) denotes the complex valued source amplitudes
of the p-th harmonic in snapshot `, (` = 1, . . . , L), hp =
[hp(1), . . . , hp(L)]T ∈ CL is the corresponding amplitude
vector of source `, a ◦ b ◦ h ∈ CM×N×L denotes the
outer tensor product of vectors a ∈ CM , b ∈ CN , and
h ∈ CL, i.e [a ◦ b ◦ h]mn` = ambnh` (see also [20]) and
W denotes zero-mean additive white circularly i.i.d. Gaussian
measurement noise of variance σ2. Furthermore, we define
the frequency response matrices A = [a(θ1), . . . ,a(θP )] and
B = [b(φ1), . . . , b(φP )] and the source amplitude matrix
H = [h1, . . . ,hP ].

In this paper, we focus for simplicity of notation on the
two-dimensional harmonic retrieval problem. We remark that
the tensor model (1) can be extended to higher dimensions
by incorporating additional sampling axes, e.g., for the multi-
dimensional harmonic retrieval problem.

Let Y(k) denote the k-th order unfolding of tensor Y in (1)
[21]. Then the first, second and third order unfolding can be
written, respectively, as

Y(1) = A (H �B)T + W(1) ∈ CM×NL (2)

Y(2) = B (H �A)T + W(2) ∈ CN×ML (3)

Y(3) = H (B �A)T + W(3) ∈ CL×MN , (4)

where � denotes the Khatri-Rao product and W(k) is the k-th
unfolding of the noise tensor [21].

III. SPARSE RECOVERY

In this work we consider a sparse recovery approach for the
multilinear low-rank factorization model in (1) where we ex-
ploit the parametric structure of the frequency response vectors
a(θ) and b(φ) along the first and the second sampling axes,
respectively. In this approach a frequency response matrix Bd

is formed by discretizing the second frequency parameter in
Q candidate values {φdq}

Q
q=1 over the frequency interval of

interest for Q� P . The dictionary matrix is given as, Bd =
[b(φd1), · · · , b(φdQ)] ∈ CN×Q. Assume for simplicity that the
true frequencies φp, (p = 1, . . . , P ) lie on the parameter grid
of candidate frequencies. Correspondingly, we can define the
column sparse matrices Ac = [ac

1, · · · ,ac
Q] ∈ CM×Q and

Hc = [hc
1, · · · ,hc

Q] ∈ CL×Q such that if the q-th candidate
frequency φdq is equal to the frequency φp of the p-th signal,
then column ac

q is equal to the steering vector of the p-th
signal and is identical to the zero vector, otherwise. Hence,
define

ac
q =

{
a(θp), if φdq = φp;
0M , otherwise.

(5)

Similarly, define

hc
q =

{
hq, if φdq = φp;
0L, otherwise.

(6)

With these definitions we can, e.g., write (1) equivalently as

Y(1) = Ac (Hc �Bd)T + W(1) ∈ CM×NL (7)

Y(2) = Bd (Hc �Ac)T + W(2) ∈ CN×ML (8)

Y(3) = Hc (Bd �Ac)T + W(3) ∈ CL×MN . (9)

Based on the sparse representation model (8) the multilinear
low-rank factorization problem can be expressed as a nuclear
norm based convex optimization problem, as given in [3],
where a lifting approach is used.

min
G

1

2

∥∥∥Y(2) −BdGT
∥∥∥2

F
+ λ

Q∑
q=1

‖Gq‖∗ , (10)

‖X‖∗ = Tr(
√
XHX) denotes the nuclear norm of a matrix

X . Denote the matrix G = (Hc�Ac) and the block variables
gq = (hq � aq) ∈ CML×1, (q = 1, . . . , Q). To avoid the
bi-linear product terms take the nuclear norm of submatrix
Gq = unvec(gq) ∈ CM×L, where unvec(·) is defined such
that vec (G)q = gq . The first summand in (10) represents the
data fidelity term, while the second summand is added as a
sparsity inducing regularization term to enforce column sparse
solutions corresponding to (5) and (6). However, the lifting
procedure significantly increases the number of optimization
variables from Q(M+L) in the original formulation to QML
in the lifted formulation resulting in significant overhead.
Based on the SCA framework introduced in [22], in this
paper we directly address the nuclear norm based problem
without lifting. In order to avoid the difficulties arising from
the non-differentiable and the non-decomposable nuclear norm
regularization term presented in (10), we use the property that,
the nuclear norm of a low-rank matrix X can be written as
the following optimization problem [23]:

‖X‖∗ = min
(X,Q,P )

1

2
(‖Q‖2F + ‖P ‖2F) s.t. X = QP T,

(11)
where X ∈ CM×L, Q ∈ CM×R and P ∈ CL×R for
dimension R usually much smaller than M and L and larger
than the rank of X . Note that the minimizers Q? and P ? of
(11) satisfy ‖Q?‖2F = ‖P ?‖2F. Inserting property (11) in the
problem in (10) and making use of (7)-(9) yields the following
equivalent problem

(A?,H?) = arg min
(A,H)

f(A,H) (12)

where,

f(A,H) =
∥∥∥Y(1)−A(H �Bd)T

∥∥∥2
F
+λ(‖A‖2F +‖H‖2F)

=
∥∥∥Y(3)−H(Bd �A)T

∥∥∥2
F
+λ(‖A‖2F +‖H‖2F).

(13)
Although the problem (12) is nonconvex, every stationary
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point of the problem is an optimal solution of the nuclear
norm based problem presented in (10) under certain regularity
conditions given in [22].

IV. SUCCESSIVE CONVEX APPROXIMATION ALGORITHM

There are various ways to solve the nonconvex non-
differentiable problem in (10) or the equivalent smooth
reformulations in (12). In [24] a semidefinite programming
approach is used and in [25] the block coordinate method
is presented. In this work, we use the successive convex
approximation (SCA) framework proposed in [22], which
fully supports massive parallel processing and implementation
on parallel hardware architectures. Instead of solving
problem (12) directly the idea of the SCA framework
is to solve a sequence of approximate problems, where
the approximate problem is much easier to solve than
the original problem (12), e.g., in parallel and based on
closed form expressions. The approximate problems are
obtained by approximating in iteration t the original objective
function f(A,H) in (13) at the current point (At,Ht)
by a properly designed decomposable approximate function
f̃
(
(A,H); (Ht,At)

)
. In order to guarantee convergence to

a stationary point of the original problem, the approximate
functions need to satisfy certain regularity conditions as stated
in [22, Assumptions (A1)-(A5)]. Particularly, the approximate
function f̃

(
(A,H); (Ht,At)

)
must be convex in (A,H) and

continuously differentiable for given (At,Ht), continuous
in (At,Ht) for given (A,H) and the gradients of the
approximate function must coincide with the gradient of the
original function at (At,Ht) (see [22] for details). From
the optimal solution of the approximate problem a descent
direction of the original problem is obtained, which is only
true if we are not already at a stationary point. The variable
update is performed with a stepsize computed from the exact
or successive line search [22]. Note that although the problem
(12) is not jointly convex in A and H , it is individually
convex in either of the variables if the other variable is fixed.
Let us introduce the following general partitions
A = [A1,A2, . . . ,AJ ], Bd = [Bd

1 ,B
d
2 , . . . ,B

d
J ]

and H = [H1,H2, . . . ,HJ ] for J denoting the
number of submatrix partitions. Denote, the submatrices
At

−j = [At
1,· · ·,At

j−1,A
t
j+1,· · ·,At

J ], Bd
−j = [Bd

1 , · · · ,Bd
j−1,

,Bd
j+1, · · · ,Bd

J ] and Ht
−j = [Ht

1,· · ·,Ht
j−1,H

t
j+1,· · ·,Ht

J ],
then at given point (At,Ht) in iteration t, the approximate
problem comprises of minimizing the approximate function,

f̃
(
(A,H); (Ht,At)

)
= f̃A

(
A;(Ht,At)

)
+ f̃H

(
H; (Ht,At)

) (14)

where,

f̃A
(
A; (Ht,At)

)
=

J∑
j=1

f̃Aj

(
Aj ; (Ht,At

−j)
)

f̃H
(
H; (Ht,At)

)
=

J∑
j=1

f̃Hj

(
Hj ; (Ht

−j ,A
t)
) (15)

and,

f̃Aj

(
Aj ; (Ht,At

−j)
)

= f
(
Aj ; (Ht,At

−j)
)

(16)

=
∥∥∥Y(1)

−j −Aj(H
t
j �Bd

j )T
∥∥2

F
+ λ ‖Aj‖2F

f̃Hj

(
Hj ; (Ht

−j ,A
t)
)

= f
(
Hj ; (Ht

−j ,A
t)
)

(17)

=
∥∥∥Y(3)

−j −Hj(B
d
j �At

j)
T
∥∥2

F
+ λ ‖Hj‖2F

for Y(1)
−j = Y(1) −At

−j(H
t
−j �Bd

−j)
T and Y(3)

−j = Y(3) −
Ht

−j(B
d
−j �At

−j)
T. Denote the solution of the approximate

problem

(BA(At,Ht),BH(At,Ht)) (18)

= arg min
(A,H)

f̃
(
(A,H); (At,Ht)

)
as, BA(At,Ht) = [BA1(At

−1,H
t), · · · ,BAJ

(At
−J ,H

t)]
and BH(At,Ht) = [BH1

(At,Ht
−1), · · · ,BHJ

(At,Ht
−J)],

then using (14)-(17) the approximate problem decomposes into
parallel subproblems, that can be solved efficiently. For each
subproblem closed form solutions are obtained as,

BAj
(At

−j ,H
t) = arg min

Aj

f̃Aj

(
Aj ; (At

−j ,H
t)
)

(19)

= Y(1)
−j (H

t
j �Bd

j )∗
(
(Ht

j �Bd
j )T(Ht

j �Bd
j )∗ + λI

)−1

BHj (Ht
−j ,A

t) = arg min
Hj

f̃Hj

(
Hj ; (At,Ht

−j)
)

(20)

= Y(3)
−j (B

d
j �At

j)
∗((Bd

j �At
j)

T(Bd
j �At

j)
∗ + λI

)−1
.

Then according to the SCA framework in [22] (BAt −
At,BHt − Ht) is a decent direction for problem (12) at
point (At,Ht), if (At,Ht) is not already a stationary point
of the problem. The variable update in iteration t is carried
out according to

At+1 = At + γ(BAt −At) (21)

Ht+1 = Ht + γ(BHt −Ht), (22)

where γ ∈ (0, 1] is the stepsize selected by the exact line
search scheme, i.e., by inserting (21)-(22) in (13) and de-
termining the stepsize that yields the largest decrease of the
objective function. Define ∆At = BAt − At and ∆Ht =
BHt −Ht. The exact line search corresponds to minimizing
the function:

f(γ) =
∥∥∥Y(1) − (At + γ∆At)

(
(Ht + γ∆Ht)�Bd

)T
∥∥∥2

F

+λ
∥∥(At + γ∆At)

∥∥2
F + λ

∥∥(Ht + γ∆Ht)
∥∥2

F (23)

over the interval (0,1]. Hence the optimal stepsize is obtained
by minimizing a four order polynomial:

γt =arg min
0≤γ≤1

f(γ)

=arg min
0≤γ≤1

{aγ4 + bγ3 + cγ2 + dγ1 + eγ0} (24)
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with polynomial coefficients given

a =Tr{M3M
H
3 } = ‖M3‖2F (25)

b =Tr{M2M
H
3 + M3M

H
2 } (26)

c =Tr{M2M
H
2 + M3M

H
1 + M1M

H
3 }+ λ

∥∥∆At
∥∥2

F

+λ
∥∥∆Ht

∥∥2
F (27)

d =Tr{M2M
H
1 + M1M

H
2 }+ λTr{At∆AtH + ∆AtAtH}

+ λTr{Ht∆HtH + ∆HtHtH}, (28)

where M1 = Y(1) −At(Ht �Bd)T, M2 = −∆At(Ht �
Bd)T −At(∆Ht �Bd)T and M3 = −∆At(∆Ht �Bd)T.
Finding the minimum in (23) is equivalent to finding the
nonnegative real root of a third order polynomial.

The solution of a third order polynomial is a set of three
roots, where at least one of the roots is real-valued. Thus,
in order to solve (24) we determine the set of real-valued
roots in the closed interval γ = [0, 1]. Then, we evaluate the
polynomial in (24) for all the roots in the set and the stepsize
is the root that yields the minimal function value.
The SCA Algorithm is summarized in Algorithm 1:

Algorithm 1 The proposed successive convex approximation
framework corresponding to problem (13) for some small
precision constant ε.

INIT: t = 0, A0 and H0 non-zero and fixed.
S1: Compute BAt and BHt according to (19) and (20).
S2: Determine the stepsize γt according to (24)
S3: Update At+1 and Ht+1 according to (21) and (22)
S4: If

∥∥At+1 −At
∥∥

F ≤ ε and
∥∥Ht+1 −Ht

∥∥
F ≤ ε

STOP: otherwise t← t+ 1 go to S1

V. NUMERICAL RESULTS

In this section, we perform numerical tests for the pro-
posed Algorithm 1 for solving problem (12) and compare
the algorithm to the lifting based SCA algorithm proposed
in [3] and other state-of-the-art methods for two-dimensional
harmonic retrieval. We consider the signal model in (1) with
M = 4, N = 16 and L = 3 and a superposition of P = 5
source signals with the two-dimensional frequencies chosen
as (φ1, θ1) = (0.0213, 0.423), (φ2, θ2) = (0.1538, 0.688),
(φ3, θ3) = (0.2463,−0.082), (φ4, θ4) = (0.4462,−0.517)
and (φ5, θ5) = (0.6275,−0.264). The corresponding complex
valued amplitudes hp have unit power with uniform random
phases. The signal-to-noise ratio is defined as SNR = 1/σ2

and for our tests we assume SNR = 5dB. The number of
updated submatrices per iteration is J = 16.

In the first numerical test, we compare the convergence
speed of the proposed SCA method for the problem reformu-
lation (12) with the lifting based SCA algorithm proposed in
[3] for problem (10). We display the normalized reconstruction
error defined as

∥∥∥X̂ −Xt
∥∥∥

F
/
∥∥∥X̂∥∥∥

F
, where X̂ denotes the

solution of the algorithm and Xt denotes the approximate
solution in the t-th iteration. For both algorithms, we consider

100 101 102 103
10−4

10−3

10−2

10−1

100

101

Iteration index t

‖X̂
−

X
t
‖ F
/
‖X̂
‖ F

SCA on (10) [3] M = 4
SCA on (12) (prop.), M = 4
SCA on (10) [3], M = 32
SCA on (12) (prop.), M = 32

Figure 1. Convergence speed for different number of receive antennas.

one parallel update of all the blocks as an iteration. For the
first experiment we select a regularization parameter λ = λ0/8

where λ0 = maxq

∥∥∥(Bd
q ⊗ IM )HY(3)T

∥∥∥
2

as suggested in
[3]. The grid consists of Q = 160 uniformly discretized
points. As can be seen in Fig. 1 the proposed algorithm
outperforms the nuclear norm based SCA algorithm in [3]
in terms of convergence speed. Moreover, the effect of the
sampling dimension M on the convergence speed is shown.
It can be seen that as the sampling dimension increases, both
algorithms show a slightly improved performance in terms of
the convergence speed.

For performance evaluation of the root-mean-square estima-
tion error (RMSE) of the 2D harmonic retrieval, we compare
in Figs. 2 a) and b) the RMSE for the proposed method to
that of the subspace based 2D-MUSIC method [2], the 2D-
Root-RARE estimator [9], the sparse recovery method space-
alternating orthogonal matching pursuit (SA-OMP) [26], the
sparse recovery method nuclear norm based SCA algorithm
in [3] and the corresponding Cramer-Rao bound [8]. The
RMSEs are averaged over 100 Monte Carlo runs to estimate
the frequencies φp and θp for p = 1, . . . , P̂ which are resolved
according to [3]. The frequencies {φ}P̂p=1 are estimated from
the column support of the matrix Ht and {θ}P̂p=1 are estimated
from the non-zero columns in At using e.g. the 1D MUSIC
method. Moreover, adaptive grid refinement is used for the
sparse recovery methods [27]. For the MUSIC and Root-
RARE methods we have used spatial smoothing and forward-
backward averaging in order to avoid a rank deficient sample
covariance matrix due to the low number of snapshots. The
sparse recovery based method use the same regularization
parameter that is chosen such that the recovered number of
source signals is equal to the true number of sources P = 5.
Among all the compared methods, the SA-OMP and MUSIC
method perform a joint parameter estimation. SA-OMP shows
a bias in the high SNR regime due to its greedy nature.
The performance of our proposed algorithm is comparable to
the SCA algorithm in [3] and the MUSIC method. However,
the advantage of our proposed method lies in the reduced
computational complexity and the convergence speed.
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Figure 2. a) RMSE for φ frequency. b) RMSE for θ.

VI. CONCLUSION

In this paper, we have proposed an algorithm based on
the recently proposed successive convex approximation frame-
work of [22] applied to the for structured multilinear low-rank
tensor decomposition problem. The algorithm exhibits full
parallelization, reduced computational complexity and faster
convergence as the state-of-the-art method for this problem.
Unlike the algorithm in [3], the proposed algorithm does
not require a lifting procedure, which increased the number
of optimization variables. Simulation results confirm that the
estimation performance of the proposed SCA algorithm is
similar to the state-of-the arts and close to the Cramer-Rao
performance bound.
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sional rank reduction estimator for parametric MIMO channel models,”
EURASIP Journal on Applied Signal Processing, vol. 2004, pp. 1354–
1363, 2004.

[10] M. Pesavento, “Fast algorithms for multidimensional harmonic re-
trieval,” Dissertation, Ruhr-Universität Bochum, Germany, Feb. 2005.

[11] M. D. Zoltowski, M. Haardt, and C. P. Mathews, “Closed-form 2-D
angle estimation with rectangular arrays in element space or beamspace
via unitary ESPRIT,” IEEE Transactions on Signal Processing, vol. 44,
no. 2, pp. 316–328, Feb 1996.

[12] G. F. Hatke and K. W. Forsythe, “A class of polynomial rooting
algorithms for joint azimuth/elevation estimation using multidimensional
arrays,” in 28th Asilomar Conference on Signals, Systems and Comput-
ers, vol. 1, Oct 1994, pp. 694–699.

[13] D. L. Donoho, “Superresolution via sparsity constraints,” SIAM journal
on mathematical analysis, vol. 23, no. 5, pp. 1309–1331, 1992.

[14] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to
basis mismatch in compressed sensing,” IEEE Transactions on Signal
Processing, vol. 59, no. 5, pp. 2182–2195, 2011.

[15] Y. Chi and Y. Chen, “Compressive two-dimensional harmonic retrieval
via atomic norm minimization,” IEEE Transactions on Signal Process-
ing, vol. 63, no. 4, pp. 1030–1042, Feb 2015.

[16] Z. Yang, L. Xie, and P. Stoica, “Vandermonde decomposition of mul-
tilevel toeplitz matrices with application to multidimensional super-
resolution,” IEEE Transactions on Information Theory, vol. 62, no. 6,
pp. 3685–3701, June 2016.

[17] Z. Tian, Z. Zhang, and Y. Wang, “Low-complexity optimization for two-
dimensional direction-of-arrival estimation via decoupled atomic norm
minimization,” in 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), March 2017, pp. 3071–3075.

[18] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of optimization theory and
applications, vol. 109, no. 3, pp. 475–494, 2001.

[19] C. Steffens, M. Pesavento, and M. E. Pfetsch, “A compact formulation
for the `2,1 mixed-norm minimization problem,” IEEE Transactions on
Signal Processing, vol. 66, no. 6, pp. 1483–1497, March 2018.

[20] E. Acar and B. Yener, “Unsupervised multiway data analysis: A litera-
ture survey,” IEEE Transactions on Knowledge and Data engineering,
vol. 21, no. 1, pp. 6–20, 2009.

[21] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[22] Y. Yang, M. Pesavento, S. Chatzinotas, and B. Ottersten, “Successive
convex approximation algorithms for sparse signal estimation with
nonconvex regularizations,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 6, pp. 1286–1302, Dec 2018.

[23] S. Burer and R. D. Monteiro, “A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization,” Mathematical
Programming, vol. 95, no. 2, pp. 329–357, 2003.

[24] M. Fazel, H. Hindi, S. P. Boyd et al., “A rank minimization heuristic with
application to minimum order system approximation,” in Proceedings of
the American control conference, vol. 6, 2001, pp. 4734–4739.

[25] C. Steffens, P. Parvazi, and M. Pesavento, “Direction finding and array
calibration based on sparse reconstruction in partly calibrated arrays,” in
IEEE 8th Sensor Array and Multichannel Signal Processing Workshop
(SAM), 2014, pp. 21–24.

[26] S.-H. Byun, W. Seong, and S.-M. Kim, “Sparse underwater acoustic
channel parameter estimation using a wideband receiver array,” IEEE
Journal of Oceanic Engineering, vol. 38, no. 4, pp. 718–729, 2013.

[27] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal recon-
struction perspective for source localization with sensor arrays,” IEEE
Transactions on signal processing, vol. 53, no. 8, pp. 3010–3022, 2005.

2019 27th European Signal Processing Conference (EUSIPCO)


