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Abstract—Deep learning methods have been successfully ap-
plied to various computer vision tasks. However, existing neu-
ral network architectures do not per se incorporate domain
knowledge about the addressed problem, thus, understanding
what the model has learned is an open research topic. In this
paper, we rely on the unfolding of an iterative algorithm for
sparse approximation with side information, and design a deep
learning architecture for multimodal image super-resolution that
incorporates sparse priors and effectively utilizes information
from another image modality. We develop two deep models
performing reconstruction of a high-resolution image of a target
image modality from its low-resolution variant with the aid of
a high-resolution image from a second modality. We apply the
proposed models to super-resolve near-infrared images using
as side information high-resolution RGB images. Experimental
results demonstrate the superior performance of the proposed
models against state-of-the-art methods including unimodal and
multimodal approaches.

Index Terms—Image super-resolution, sparse coding, multi-
modal deep learning, designing neural networks.

I. INTRODUCTION

Image super-resolution (SR) refers to the recovery of a high-
resolution (HR) image from its low-resolution (LR) version.
The problem is severely ill-posed and a common approach for
its solution considers the use of sparse priors [1]–[3]. For ex-
ample, the method presented in [1] is based on the assumption
that the LR and HR images have joint sparse representations
with respect to some dictionaries. Nevertheless, sparsity based
methods result in complex optimization problems, which is a
significant drawback in large-scale settings.

Accounting for the high computational cost of numerical
optimization algorithms, deep neural networks have been
successfully applied to image SR achieving state-of-the-art
performance [4]–[8]. Deep learning methods rely on large
datasets to learn a non-linear transformation between the LR
and HR image spaces. The methods are efficient at inference
by shifting the computational load to the training phase.
However, most of the existing deep models do not integrate
domain knowledge about the problem and cannot provide
theoretical justifications for their effectiveness. A different
approach was followed in the recent work of [9], which relies
on a deep unfolding architecture referred to as LISTA [10].
LISTA introduced the idea of translating an iterative numerical
algorithm for sparse approximation into a feed-forward neural
network. By integrating LISTA into their network architecture,

the authors of [9] managed to incorporate sparse priors into
the deep learning solution.

In many image processing and machine vision applications
a reference HR image from a second modality is often
available [11], [12]. The recovery of an HR image from its
LR variant with the aid of another HR image from a different
image modality is referred to as multimodal image SR [12],
[13]. Several studies have investigated sparse representation
models as well as deep learning methods for multimodal image
SR [11]–[16].

In this paper, we propose a deep network architecture that
incorporates sparse priors and effectively utilizes information
from another image modality to perform multimodal image
SR. Inspired by [9], the proposed deep learning model relies
on a deep unfolding method for sparse approximation with
side information. Our contributions are threefold:

1) We address multimodal image SR as a problem of sparse
approximation with side information and formulate an
appropriate `1-`1 minimization problem for its solution.

2) We design a core neural network model for patch-based
image SR, employing a recently proposed deep sparse
approximation model [17], referred to as LeSITA, to
integrate information from another HR image modality
in the solution.

3) We propose two novel deep neural network architectures
for multimodal image SR that employ the LeSITA-based
SR model, achieving superior performance against state-
of-the-art methods.

The proposed models are used to super-resolve near-infrared
(NIR) LR images given RGB HR images. The performance of
the proposed models is demonstrated by experimental results.

The rest of the paper is organized as follows: In Sec-
tion II we present the necessary background and related
work. Section III explains the details of the proposed model
architectures for multimodal image SR. Section IV presents
the experimental results, and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Single Image SR with Sparse Priors

Let Y ∈ Rn
(y)
1 ×n

(y)
2 be an LR image obtained from an HR

image X ∈ Rn
(x)
1 ×n

(x)
2 . According to [1], the transformation

of an HR image to an LR image can be modeled as a blurring
and downscaling process expressed by Y = BAX , where A
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Fig. 1. Deep learning for sparse coding with LISTA [10].

and B denote blurring and downscaling operators, respectively.
Under this assumption, an ny-dimensional (vectorized) patch
y from the bicubic-upscaled LR image exhibits a common
sparse representation with the corresponding patch x from the
HR image w.r.t. different over-complete dictionaries Dy ∈
Rny×nα , Dx ∈ Rnx×nα , that is, y = Dyα and x = Dxα,
where α ∈ Rnα . Dy , Dx can be jointly learned with coupled
dictionary learning techniques [1]. Therefore, the problem of
computing the HR patch x given the LR patch y can be
formulated as

x = Dxα, s.t. α = arg min
v∈Rnα

‖y −Dyv‖22 + λ‖v‖1, (1)

where λ is a regularization parameter, and ‖v‖1 =
∑nα
i=1 |vi|

is the `1-norm, which promotes sparsity. Several numerical
optimization methods have been proposed for the solution
of (1) [18].

In order to account for the high computational cost of
numerical algorithms, the seminal work in [10] translated a
proximal algorithm, namely ISTA [19], into a neural network
form referred to as LISTA. Each layer of LISTA implements
an iteration of ISTA according to

αt+1 = φγ(Sαt +Wy), (2)

where W , S, and γ are learnable parameters, and φγ is the
soft thresholding operator [19] expressed by the component-
wise shrinkage function φγ(ui) = sign(ui) max{|ui| − γ, 0},
i = 1, . . . , nα, which acts as a nonlinear activation function.
W and S are initialized as: S = I− 1

LD
TD, W = 1

LD
T. The

network is depicted in Fig. 1.
By employing the model presented in [1] and leveraging

the fast computations of sparse codes performed by LISTA,
the authors of [9] proposed a deep neural network model for
single-modal image super resolution that incorporates sparse
priors.

B. Sparse Coding with Side Information via Deep Learning
The deep unfolding idea presented in [10], also explored

in [20]–[22], introduced a new methodology for the design of
neural networks, enabling the network structure to incorporate
domain knowledge about the addressed problem. Following
similar principles, we recently proposed a deep learning archi-
tecture to solve the sparse approximation problem with the aid
of side information [17]. Our approach relies on a proximal
algorithm for `1-`1 minimization. Specifically, suppose that
we want to find a sparse approximation α ∈ Rnα of a signal
y ∈ Rny w.r.t. an over-complete dictionary Dy ∈ Rny×nα ,
given a side information signal α̃ ∈ Rnα that is correlated to
α. Then, by solving the `1-`1 minimization problem

α = arg min
v∈Rnα

1

2
‖y −Dyv‖22 + λ

(
‖v‖1 + ‖v − α̃‖1

)
, (3)

Fig. 2. Deep learning for sparse coding with side information using
LeSITA [17].

we obtain a solution that is of higher accuracy compared to (1),
as long as certain conditions concerning the similarity between
α and α̃ hold [23], [24].

A proximal algorithm that solves (3) performs the following
iterations [17], [25]:

αt+1 = ξµ
(
αt − 1

L
DT(Dαt − y)

)
, (4)

where L is the Lipschitz constant of ∇‖y−Dyv‖22 and µ = λ
L .

ξµ(u; α̃) is the proximal operator expressed by:
1) for α̃i ≥ 0, i = 1, . . . , nα:

ξµ(ui; α̃i) =



ui + 2µ, ui < −2µ

0, −2µ ≤ ui ≤ 0

ui, 0 < ui < α̃i

α̃i, α̃i ≤ ui ≤ α̃i + 2µ

ui − 2µ, ui ≥ α̃i + 2µ

(5)

2) for α̃i < 0, i = 1, . . . , nα:

ξµ(ui; α̃i) =



ui + 2µ, ui < α̃i − 2µ

α̃i, α̃i − 2µ ≤ ui ≤ α̃i
ui, α̃i < ui < 0

0, 0 ≤ ui ≤ 2µ

ui − 2µ, ui ≥ 2µ

. (6)

By setting Q = I − 1
LD

TD, R = 1
LD

T, (4) takes the form:

αt+1 = ξµ(Qαt +Ry; α̃). (7)

A feed forward neural network performing operations ac-
cording to (7) can learn sparse codes with the aid of side
information. Q, R, and µ are parameters learned from data.
Compared to LISTA [10], the network in [17]—which we
call Learned Side-Information-driven iterative soft Thresh-
olding Algorithm (LeSITA)—incorporates a new activation
function ξµ(·; α̃) integrating the side information signal α̃ into
the sparse representation learning process.

III. THE PROPOSED METHOD

A. Multimodal Image SR with Sparse Priors

The problem of multimodal image super-resolution concerns
the reconstruction of an HR image X ∈ Rn

(x)
1 ×n

(x)
2 from an

LR image Y ∈ Rn
(y)
1 ×n

(y)
2 , given an HR reference or guidance

image Z ∈ Rn
(z)
1 ×n

(z)
2 from another modality. In this work, we

utilize the reference image Z as side information and leverage
our previous work [17] to build a deep network performing
multimodal image SR.
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Fig. 3. The proposed DMSC model for multimodal image SR consists of (i)
a LeSITA encoder computing a latent representation of the LR/HR images
of the main modality, using side information from the guidance modality
provided by (ii) a LISTA encoder. A linear decoder recovers the HR patch
from the latent representation. The convolutional layers H1, H2 perform patch
extraction and patch aggregation operations, respectively.

We follow the sparsity-based model presented in [1] and
assume that a (vectorized) patch y ∈ Rny from the bicubic-
upscaled LR image Y and an HR patch x ∈ Rnx from the
high resolution image X share the same sparse representation
α ∈ Rnα under over-complete dictionaries Dy ∈ Rny×nα and
Dx ∈ Rnx×nα , respectively. If the images of the target and the
guidance modalities are highly correlated, we can also assume
that the reference patch z ∈ Rnz has a sparse representation
α̃ ∈ Rnα under a dictionary Dz ∈ Rnz×nα , which is similar to
α, for example, by means of the `1 norm. Then, the multimodal
image super-resolution problem can be formulated as an `1-`1
minimization problem of the form (3).

By employing LeSITA to solve (3), we can design an end-
to-end multimodal deep learning architecture to perform super-
resolution of the input LR image Y with the aid of a reference
HR image Z. The network architecture incorporates sparse
priors and exploits the correlation between the two available
modalities. The proposed framework is presented next.

B. DMSC: Deep Multimodal Sparse Coding Network

LeSITA can learn sparse codes of a target image modality
using side information from another correlated image modal-
ity. The side information needs to be a sparse signal similar to
the target sparse code. To obtain sparse codes of the guidance
modality, our architecture also includes a LISTA subnetwork.
The proposed core model consists of the following three
components: (i) a LeSITA encoder that computes a sparse
representation of an LR image patch of the target modality
using side information, (ii) a LISTA subnetwork that produces
a sparse representation of the available HR patch from the
guidance image, and (iii) a linear decoder that reconstructs
the HR image patch of the main modality using the sparse
representation obtained from LeSITA.

LeSITA computes a sparse representation α of the LR patch
y according to (7). LISTA accepts as input the reference
patch z and performs a nonlinear transformation according to
α̃t+1 = φγ(Sα̃t + Wz) to produce a side information signal
for LeSITA. Given the sparse representation α produced by
LeSITA, the HR patch x can be recovered by a linear decoder
according to x = Dxα. Dx is a learnable dictionary. By
training the network end-to-end, an LR/HR transformation that
relies on the joint representations provided by LeSITA can be
learned.

Fig. 4. The proposed DMSC+ model for multimodal image SR consists of
the base DMSC model and a LISTA subnetwork with a linear decoder. The
convolutional layer H3 performs patch extraction (similar to H1), while H4

implements a patch aggregator layer.

The proposed core model successfully performs multimodal
image SR at a patch level. Nevertheless, our goal is to design
a network that accepts as input the entire images Y and Z
and outputs the HR image X . To this end, we add three
more layers to the network as follows. A convolutional layer
H1 consisting of m filters of size k × k is added before the
LeSITA encoder to extract m-dimensional feature vectors from
the LR image corresponding to patches of size k×k. A similar
layer is added before the LISTA branch to ensure that the side
information patches stay aligned with the LR patches. Finally,
a convolutional layer H2 is added after the decoder Dx to
aggregate the reconstructed HR patches and form the super-
resolved image X . We present this model in Fig. 3 and refer
to it as Deep Multimodal Sparse Coding network (DMSC).

The proposed network can be trained end-to-end using the
mean square error (MSE) loss function:

min
Θ

∑
i

‖X̂i −Xi‖22, (8)

where, Θ denotes the set of all network parameters, Xi is the
corresponding ground-truth HR image of the target modality,
and X̂i is the super-resolved estimation computed by the
network.

C. DMSC+: Deep Multimodal Image SR Network

The DMSC network presented in Section III-B learns joint
representations of three different image modalities, that is, the
input LR image Y , the guidance modality Z and the HR image
X . Learning representations that encode only the common
information among the different modalities is critical for the
performance of the model. Nevertheless, some information
from the guidance modality may be misleading when learning
a mapping between the LR and HR versions of the target
modality. In other words, the encoding performed by the
LISTA branch may result in transferring unrelated information
to the LeSITA encoder. As a result, the latent representation of
the target modality may not capture the underlying mapping
from the LR space to the HR space.

As the performance of the model relies on the learned
LR/HR transformation of the target modality, we present
an architecture equipped with an uncoupling component that
focuses on learning the LR/HR transformation without using
side information. The proposed framework consists of two
different subnetworks: (i) a DMSC subnetwork performing
fusion of the information of the different image modalities,
and (ii) a subnetwork for the enhancement of the LR/HR
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Table I
Performance comparison [in terms of PSNR (dB)] for ×2 SR upscaling

(The results for scale ×2 are not presented in CDLSR [13]).

×2 CSCN ACSC DJF DMSC DMSC+

u-0006 39.47 39.78 41.52 41.79 43.21
u-0017 36.76 36.64 38.65 39.39 40.41
o-0018 33.98 34.26 34.78 36.02 37.90
u-0026 32.94 33.11 33.15 33.98 34.96
o-0030 33.34 33.32 35.67 36.32 37.73
u-0050 33.31 33.39 32.60 33.10 33.78
Average 34.97 35.09 36.07 36.85 37.99

Table II
Performance comparison [in terms of PSNR (dB)] for ×4 SR upscaling.

×4 CSCN ACSC DJF CDLSR DMSC DMSC+

u-0006 32.60 32.61 36.04 36.79 37.24 37.82
u-0017 31.68 31.66 34.18 35.27 35.04 35.75
o-0018 27.28 27.42 30.72 33.01 32.30 32.91
u-0026 27.91 27.92 29.21 30.35 30.12 30.40
o-0030 27.72 27.66 31.27 32.71 32.30 32.66
u-0050 28.20 27.80 28.58 29.37 29.39 29.64
Average 29.24 29.18 31.67 32.92 32.73 33.19

Table III
Performance comparison [in terms of PSNR (dB)] for ×6 SR upscaling.

×6 CSCN ACSC DJF CDLSR DMSC DMSC+

u-0006 29.94 29.97 34.92 34.15 35.43 35.74
u-0017 29.53 29.48 32.80 32.98 33.09 33.55
o-0018 24.57 24.70 29.92 31.03 30.44 31.34
u-0026 25.79 25.97 28.38 28.88 28.77 29.01
o-0030 25.86 25.91 30.00 30.52 30.37 30.61
u-0050 26.71 26.43 27.64 28.37 28.27 28.45
Average 27.07 27.08 30.62 30.99 31.06 31.45

transformation. The second is realized by a LISTA encoder
followed by a linear decoder and includes convolutional layers
(H3, H4) to operate on the entire image. The proposed deep
multimodal framework, referred to as DMSC+, is depicted in
Fig. 4. The network is trained using objective (8).

IV. EXPERIMENTS

In this section, we first report the implementation details of
the proposed DMSC and DMSC+ models. Then, we present
experimental results on multimodal image SR.

The convolutional layers denoted by H1 (patch extractors)
are realized with 100 filters of size 7 × 7 to extract 100-
dimensional feature vectors from patches of size 7× 7 of the
LR image and the HR side information. Each feature vector
is then processed by the corresponding LeSITA or LISTA
encoder to produce a sparse representation of the LR input
and the side information. H3 is realized in a similar way.
Each of the convolutional layers H2 and H4 contains one
5 × 5 × 49 filter to build-up the super-resolved NIR image
from the computed patches. The sizes of the linear filters
W and R are set to 128 × 100, while S and Q are set to

128 × 128. The linear decoder layer Dx is realized by a
128× 49 linear filter that recovers 7× 7 HR patches. We note
that all convolutional layers use padding such that the networks
preserve the spatial size of the input. We use learnable scalars
for the parameters γ and µ of the proximal operators. We
initialize the convolutional and linear filters using random
weights drawn from a Gaussian distribution with standard
deviation 0.1. The parameters γ and µ are initialized to 0.15.

We provide experimental results for the DMSC and DMSC+

models, and compare their performance with existing single-
modal and multimodal SR methods. In our experiments, we
employ the EPFL RGB-NIR dataset1. The dataset includes
spatially aligned RGB and near-infrared (NIR) image pairs,
capturing the same scene of 477 different landscapes. Taking
into account the high cost per pixel in NIR cameras, we
want to super-resolve LR NIR images using the corresponding
HR RGB image of the same scene as side information. A
preprocessing step involves upscaling the NIR LR image to the
desired resolution using bicubic interpolation, which results in
a blurry image given as input to the model. We convert the
RGB images to YCbCr and use only the luminance channel
as side information. The training dataset contains 35000 sam-
ples of NIR/RGB pairs; due to memory and computational
limitations, we use image patches of size 60× 60 to train our
models. We reserve 6 image pairs for testing2.

We train the proposed models for three SR scales, ×2,
×4 and ×6, by minimizing the objective (8) utilizing ADAM
optimizer. We compare the proposed models with (i) a cou-
pled dictionary learning (CDLSR) method [13], (ii) the deep
joint image filtering (DJF) method [12], (iii) an approximate
convolutional sparse coding network (ACSC) [26], and (iv)
a cascaded sparse coding network (CSCN) [9]. CDLSR and
DJF perform multimodal image SR using sparse coding and
convolutional neural networks, respectively. ACSC and CSCN
are unimodal neural networks and do not use information
from another image modality. Results in terms of Peak Signal-
to-Noise Ratio (PSNR) for different scales are presented in
Tables I, II and III. As can be seen, the DMSC model
achieves state-of-the-art performance at most scaling factors.
For instance, the average gains over the best competing method
for ×2 and ×6 upscaling factors are 0.78 dB and 0.07 dB,
respectively. However, for scale ×4 the average PSNR is 0.19
dB less than the best previous method. The DMSC+ always
outperforms existing techniques in terms of average PSNR and
exhibits the best values for most of the testing images at all
scales. A visual example presented in Fig. 5 corroborates our
numerical results.

V. CONCLUSIONS

We developed two novel deep multimodal models, namely
DMSC and DMSC+, for the super-resolution of an LR image
of a target modality with the aid of an HR image from
another modality. The proposed design relies on the unfolding

1https://ivrl.epfl.ch/supplementary material/cvpr11/
2A test image is identified by a letter “u”, “o” referring to the folders

urban and oldbuilding in the dataset, and a code “00xx”.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. ×6 upscaling for (a) the test image “u0017” (ground-truth) with (b) bicubic, (c) CSCN [9], (d) ACSC [26], (e) DJF [12] and (f) DMSC+. Results
for CDLSR [13] are not presented as the code is not available.

of an iterative algorithm for sparse approximation with side
information. The architecture incorporates sparse priors and
effectively integrates the available side information. We ap-
plied the proposed models to super-resolve NIR images using
RGB images as side information. We compared our models
with existing single-modal and multimodal designs, showing
their superior performance.
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